

2

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 MEAP Edition
 Manning Early Access Program

 Copyright 2010 Manning Publications

 For more information on this and other Manning titles go to
 www.manning.com

Licensed to nancy chen <amigo4u2009@gmail.com>

http://www.manning.com/�

3

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Table of Contents

 1. Meet Mahout

Part 1 Recommendations

 2. Introducing Recommenders
 3. Representing Data
 4. Making Recommendations
 5. Taking Recommenders to production
 6. Distributing Recommendation Computations

Part 2 Clustering

 7. Introduction to Clustering
 8. Representing Data
 9. Clustering algorithms in Mahout
10. Evaluating cluster quality
11. Taking clustering to production
12. Real world applications of clustering

Part 3 Classification

13. Introduction to classification
14. Power of the naive classifier
15. Multiclass classification
16. Classifier evaluation
17. Tuning your classifier for greater accuracy and performance
18. Bringing classifier to the real world

Licensed to nancy chen <amigo4u2009@gmail.com>

4

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

1
Meet Mahout

This chapter covers:

 What Mahout is

 A glimpse of recommender engines, clustering, classification in the real world

 Setting up Mahout

As you may have guessed from the title, this book is about putting a particular tool, Mahout, to effective

use in real life. And what is Mahout?

Mahout is an open source machine learning library from Apache. The algorithms it implements fall

under the broad umbrella of “machine learning,” or “collective intelligence.” This can mean many things,

but at the moment for Mahout it means primarily collaborative filtering / recommender engines,

clustering, and classification.

It is scalable. Mahout aims to be the machine learning tool of choice when the data to be processed

is very large, perhaps far too large for a single machine. In its current incarnation, these scalable

implementations are written in Java, and some portions are built upon Apache's Hadoop distributed

computation project.

It is a Java library. It does not provide a user interface, a pre-packaged server, or installer. It is a

framework of tools intended to be used and adapted by developers.

1.1 Is Mahout for Me?
You may be wondering – is this a project and a book for me?

If you are seeking a textbook on machine learning, no. This book does not attempt to fully explain

the theory and derivation of the various algorithms and techniques presented. Some familiarity with

these machine learning techniques and related concepts like matrix and vector math is useful in reading

this book, but not assumed.

If you are developing modern, intelligent applications, then the answer is yes. This book provides a

practical rather than theoretical treatment of these techniques, along with complete examples and

recipes for solutions. It develops some insights gleaned by experienced practitioners in the course of

demonstrating how Mahout can be deployed to solve problems.

Licensed to nancy chen <amigo4u2009@gmail.com>

5

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

If you are a researcher in artificial intelligence, machine learning and related areas – yes. Chances

are your biggest obstacle is translating new algorithms into practice. Mahout provides a fertile

framework for testing and deploying new large-scale algorithms. This book is an express ticket to

functioning machine learning systems on top of complex distributed computing frameworks.

If you are a leading a product team or startup that will leverage machine learning to create a

competitive advantage, this book is also for you. Through real-world examples, it will plant ideas about

the many ways these techniques may be deployed. It will also help your scrappy technical team jump

directly to a cost-effective implementation that can handle volumes of data previously only realistic for

organizations with large technology resources.

Finally, you may be wondering how to say “Mahout” – it should rhyme with “trout.” It is a Hindi word

that refers to an elephant driver, and to explain that one, here’s a little history. Mahout began life in

2008 as a subproject of Apache's Lucene project, which provides the well-known open-source search

engine of the same name. Lucene provides advanced implementations of search, text mining and

information retrieval techniques. In the universe of Computer Science, these concepts are adjacent to

machine learning techniques like clustering and, to an extent, classification. So, some of the work of the

Lucene committers that fell more into these machine learning areas was spun off into its own

subproject. Soon after, Mahout absorbed the “Taste” open-source collaborative filtering project.

As of April 2010, Mahout has become a top-level Apache project in its own right.

Much of Mahout’s work has been to not only implement these algorithms conventionally, in an

efficient and scalable way, but also to convert some of these algorithms to work at scale on top of

Hadoop. Hadoop’s mascot is an elephant, which at last explains the project name!

Figure 1.1 Mahout and its related projects

Mahout incubates a number of techniques and algorithms, many still in development or in an

experimental phase. At this early stage in the project's life, three core themes are evident: collaborative

filtering / recommender engines, clustering, and classification. Chances are that if you are reading

this, you are already aware of the interesting potential of these three families of techniques. But just in

case, read on.

Licensed to nancy chen <amigo4u2009@gmail.com>

6

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

1.2 Recommender Engines
Recommender engines are the most immediately recognizable machine learning technique in use today.

We've all seen services or sites that attempt to recommend books or movies or articles based on our

past actions. They try to infer tastes and preferences and identify unknown items that are of interest:

 Amazon.com is perhaps the most famous commerce site to deploy recommendations. Based on

purchases and site activity, Amazon recommends books and other items likely to be of interest.
See figure 1.1.

 Netflix similarly recommends DVDs that may be of interest, and famously offered a $1,000,000
prize to researchers that could improve the quality of their recommendations.

 Dating sites like Líbímseti (discussed later) can even recommend people to people.

 Social networking sites like Facebook use variants on recommender techniques to identify people
most likely to be an as-yet-unconnected friend.

Figure 1.1 A recommendation from Amazon. Based on past purchase history and other activity of customers like the
user, Amazon considers this to be something the user is interested in. It can even tell the user something similar that he
or she has bought or liked that in part caused the recommendation.

1.3 Clustering
Clustering turns up in less apparent but equally well-known contexts. As its name implies, clustering

techniques attempt to group a large number of things together into clusters that share some similarity.

It is a way to discover hierarchy and order in a large or hard-to-understand data set, and in that way

reveal interesting patterns or make the data set easier to comprehend.

Google News groups news articles according to their topic using clustering techniques in order to

present news grouped by logical story, rather than a raw listing of all articles. Figure 1.2 below

illustrates this.

Search engines like Clusty group search results for similar reasons

Licensed to nancy chen <amigo4u2009@gmail.com>

7

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Consumers may be grouped into segments (clusters) using clustering techniques based on attributes

like income, location, and buying habits.

Figure 1.2. A sample news grouping from Google News. A detailed snippet from one representative story is displayed,
and links to a few other similar stories within the cluster for this topic are shown. Links to all the rest of the stories that
clustered together in this topic are available too.

1.4 Classification
Classification techniques decide how much a thing is or isn't part of some type or category, or, does or

doesn't have some attribute. Classification is likewise ubiquitous, though even more behind-the-scenes.

Often these systems “learn” by reviewing many instances of items of the categories in question in order

to deduce classification rules. This general idea finds many applications:

Yahoo! Mail decides whether incoming messages are spam, or not, based on prior emails and spam

reports from users, as well as characteristics of the e-mail itself. A few messages classified as spam are

shown in figure 1.3.

Picasa (http://picasa.google.com/) and other photo management applications can decide when a region

of an image contains a human face.

Optical character recognition software classifies small regions of scanned text into individual characters

by classifying the small areas as individual characters.

Apple’s Genius feature in iTunes reportedly uses classification to classify songs into potential playlists

for users

Figure 1.3 Spam messages as detected by Yahoo! Mail. Based on reports of email spam from users, plus other
analysis, the system has learned certain attributes that usually identify spam. For example, messages mentioning
“viagra” are frequently spam – as are those with clever misspellings like “v1agra”. The presence of such terms are an
example of an attribute that a spam classifier can learn.

1.5 Scaling up
Each of these techniques works best when provided with a large amount of good input data. In some

cases, these techniques must work not only on large amounts of input, but must produce results

quickly. These factors quickly make scalability a major issue.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://picasa.google.com/�

8

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Picasa may have hosted over half a billion photos even three years ago, according to some crude

estimates1

According to a similar analysis, Google News sees about a 3.5 million new news articles per day.

Although this by itself is not a large amount, consider that these articles must be clustered, along with

other recent articles, in minutes in order to become available in a timely manner.

. This implies millions of new photos per day that must be analyzed. The analysis of one

photo by itself is not a large problem, though it is repeated millions of times. But, the learning phase

can require information from each of the billions of photos simultaneously -- a computation on a scale

that is not feasible for a single machine.

The subset of rating data that Netflix published for the Netflix Prize contained 100 million ratings2

These techniques are necessarily deployed in contexts where the amount of input is large – so large,

that it is not feasible to process it all on one computer, even a powerful one. So, nobody implementing

these techniques can ignore issues of scale. This is why Mahout makes scalability a top priority, and,

why this book will focus, in a way that others don't, on dealing with large data sets effectively.

.

Since this was just the data released for contest purposes, presumably, the total amount of data that

Netflix actually has and must process to create recommendations is many times larger!

1.5.1 MapReduce and Hadoop
Some of Mahout makes use of Apache's Hadoop project, which includes an open-source, Java-based

implementation of the MapReduce (http://labs.google.com/papers/mapreduce.html) distributed

computing framework popularized and used internally at Google. MapReduce is a programming

paradigm that at first sounds odd, or too simple to be powerful. The MapReduce paradigm applies to

problems where the input is a set of key-value pairs. A “map” function turns these key-value pairs into

other intermediate key-value pairs. A “reduce” function merges in some way all values for each

intermediate key, to produce output. Actually, many problems can be framed as a MapReduce problem,

or a series of them. And, the paradigm lends itself quite well to parallelization: all of the processing is

independent, and so can be split across many machines. Rather than reproduce a full explanation of

MapReduce here, we refer you to tutorials such as the one provided by Hadoop

(http://hadoop.apache.org/common/docs/current/mapred_tutorial.html).

Hadoop implements the MapReduce paradigm, which is no small feat, even given how simple

MapReduce sounds. It manages storage of the input, intermediate key-value pairs, and output; this

data could potentially be massive, and, must be available to many worker machines, not just stored

locally on one. It manages partitioning and data transfer between worker machines. It handles detection

of and recovery from individual machine failure. Understanding how much work goes on behind the

scenes will help prepare you for how relatively complex using Hadoop can seem. It’s not just a library

you add to your project. It’s several components, each with libraries and (several) standalone server

processes, which might be run on several machines. Operating processes based on Hadoop is not

simple, but, investing in a scalable, distributed implementation can pay dividends later: because your

data may grow exponentially to great sizes before you know it, this sort of scalable implementation is a

way to future-proof your application.

1 http://blogoscoped.com/archive/2007-03-12-n67.html
2 http://archive.ics.uci.edu/ml/machine-learning-databases/netflix/

Licensed to nancy chen <amigo4u2009@gmail.com>

http://labs.google.com/papers/mapreduce.html�
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html�

9

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Later, this book will try to cut through some of that complexity to get you running on Hadoop fast, at

which point you can explore the finer points and details of operating full clusters, and tuning the

framework. Because this is complex framework that needs a great deal of computing power is becoming

so popular, it’s not surprising that cloud computing providers are beginning to offer Hadoop-related

services. For example Amazon offers Elastic MapReduce (http://aws.amazon.com/elasticmapreduce/), a

service which manages a Hadoop cluster, provides the computing power, and puts a friendlier interface

on the otherwise complex task of operating and monitoring a large-scale job with Hadoop.

1.6 Setting up Mahout
Without further delay, let’s look ahead to engaging Mahout in practice. You will need to assemble some

tools before you can “play along at home” as we present some code in the coming chapters. We assume

you are comfortable with Java development already.

Mahout and its associated frameworks are Java-based and therefore platform-independent, so you

should be able to use it with any platform that can run a modern JVM. At times, we will need to give

examples or instructions that will vary from platform to platform. In particular, command-line

commands are somewhat different in a Windows shell than in a FreeBSD tcsh shell. We will use

commands and syntax that work with bash, a shell found on most Unix-like platforms. This is the

default on most Linux distributions, Mac OS X, many Unix variants, and Cygwin (a popular Unix-like

environment for Windows). Windows users who wish to use the Windows shell are the most likely to be

inconvenienced by this. Still, it should be simple to interpret and translate the listings given in this book

to work for you.

1.6.1 Java and IDE
Java is likely already installed on your personal computer if you have done any Java development so far.

Note that Mahout requires Java 6. If in doubt, open a terminal and type java -version. If the

reported version does not begin with “1.6”, you need to also install Java 6.

Windows and Linux users can find a Java 6 JVM from Sun at http://java.sun.com. Apple provides a

Java 6 JVM for Mac OS X 10.5 and 10.6. If it does not appear that Java 6 is being used, open “Java

Preferences” under /Applications/Utilities. This will allow you to select Java 6 as the default.

Most people will find it quite a bit easier to edit, compile and run the many examples we will see with

the help an IDE; this is strongly recommended. Eclipse (http://www.eclipse.org) is the most popular,

free Java IDE. Installing and configuring Eclipse is beyond the scope of this book, but you should spend

some time becoming familiar with it before proceeding. IntelliJ IDEA

(http://www.jetbrains.com/idea/index.html) is another powerful and popular IDE, with a free

“community” version now available.

For example, IDEA can create a new project from an existing Maven model; by specifying the root

directory of the Mahout source code upon creating a project, it will automatically configure and present

the entire project in an organized manner. It’s then possible, for example, drop the source code found

throughout this book under the core/src/… source root, and run it from within IDE with one click --

the details of dependencies and compilation are managed automatically. This should prove far easier

than attempting to compile and run manually.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://aws.amazon.com/elasticmapreduce/�
http://java.sun.com/�
http://www.eclipse.org/�
http://www.jetbrains.com/idea/index.html�

10

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

1.6.2 Installing Maven
As with many Apache projects, Mahout’s build and release system is built around Maven

(http://maven.apache.org). Maven is a command-line tool that manages compiling code, packaging

release, generating documentation, and publishing formal releases. Although it has some superficial

resemblances to the also-popular Ant build tool, it is not the same. Ant is a flexible, lower-level scripting

language, and Maven is a higher-level tool more purpose-built for release management.

Because Mahout uses Maven, you should install Maven yourself. Mac OS X users will be pleased to

find that Maven should already be installed. If not, install Apple’s Developer Tools. Type mvn --
version on the command line. If you successfully see a version number, and the version is at least

2.2, you are ready to go. If not, you should install a local copy of Maven.

Users of Linux distributions with a decent package management system may be able to use it to

quickly obtain a recent version of Maven. Otherwise, standard procedure would be to download a binary

distribution, unpack it to a common location such as /usr/local/maven, then edit bash’s

configuration file, ~/.bashrc, to include a line like export PATH=/usr/local/maven/bin:$PATH.

This will ensure that the mvn command is always available.

If you are using an IDE like Eclipse or IntelliJ, it already includes Maven integration. Refer to its

documentation to learn how to enable the Maven integration. This will make working with Mahout in an

IDE much simpler, as the IDE can use the project’s Maven configuration file (pom.xml) to instantly

configure and import the project.

1.6.3 Installing Mahout
Mahout is still in development. This book was written to work with the 0.4 release of Mahout. This

release and others may be downloaded by following instructions at

http://lucene.apache.org/mahout/releases.html; the archive of source code may be unpacked anywhere

that is convenient on your computer.

Because Mahout is changing frequently, and bug fixes and improvements are added regularly, it may

be useful in practice to use a later release (or even the latest, unreleased code from Subversion. See

http://lucene.apache.org/mahout/developer-resources.html). Future point releases should be

backwards-compatible with the examples in this book.

Once you have obtained the source, either from Subversion or from a release archive, create a new

project for Mahout in your IDE. This is IDE-specific; refer to its documentation for particulars of how this

is accomplished. It will be easiest to use your IDE’s Maven integration to simply import the Maven

project from the pom.xml file in the root of the project source.

Once configured, you can easily create a new source directory within this project to hold sample

code that will be introduced in upcoming chapters. With the project properly configured, you should be

able to compile and run the code transparently with no further effort.

1.6.4 Installing Hadoop
For some activities later in this book, you will need your own local installation of Hadoop. You do not

need a cluster of computers to run Hadoop. Setting up Hadoop is not difficult, but not trivial. Rather

than repeat the procedures, we direct you to obtain a recent copy of Hadoop (version 0.20.x at the time

of this writing) from http://hadoop.apache.org/common/releases.html, and then set up Hadoop for

Licensed to nancy chen <amigo4u2009@gmail.com>

http://maven.apache.org/�
http://lucene.apache.org/mahout/releases.html�
http://lucene.apache.org/mahout/developer-resources.html�
http://hadoop.apache.org/common/releases.html�

11

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

“pseudo-distributed” operation by following the quick start documentation currently found at

http://hadoop.apache.org/common/docs/current/quickstart.html.

1.7 Summary
Mahout is a young, open-source, scalable machine learning library from Apache, and this book is a

practical guide to using Mahout to solve real problems with machine learning techniques. In particular,

we will soon explore recommender engines, clustering, and classification. If you’re a researcher familiar

with machine learning theory and looking for a practical how-to guide, or a developer looking to quickly

learn best practices from practitioners, this book is for you.

These techniques are no longer merely theory: we’ve noted already well-known examples of

recommender engines, clustering, and classification deployed in the real world: e-commerce, e-mail,

videos, photos and more involve large-scale machine learning.

And, we’ve noted the vast amount of data sometimes employed with these techniques – scalability is

a uniquely persistent concern in this area. We took a first look at MapReduce and Hadoop and how they

power some of the scalability that Mahout provides.

Because this will be a hands-on, practical book, we’ve set up to begin working with Mahout right

away. At this point, you should have assembled the tools you will need to work with Mahout and be

ready for action. Because we promised that this book would be practical, let that wrap up the opening

remarks now and get on to some real code with Mahout. Read on!

Licensed to nancy chen <amigo4u2009@gmail.com>

http://hadoop.apache.org/common/docs/current/quickstart.html�

12

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 2
Introducing Recommenders

This chapter covers:

 A first look at a Recommender in action

 Evaluating accuracy of recommender engines

 Evaluating an engine’s precision and recall

 Evaluating a recommender on a real data set: GroupLens

Each day we form opinions about things we like, don't like, and don't even care about. It happens

unconsciously. You hear a song on the radio and either notice it because it's catchy, or because it

sounds awful – or maybe don't notice it at all. The same thing happens with t-shirts, salads, hairstyles,

ski resorts, faces, and television shows.

Although people's tastes vary, they do follow patterns. People tend to like things that are similar to

other things they like. Because I love bacon-lettuce-and-tomato sandwiches, you can guess I would

enjoy a club sandwich, which is mostly the same sandwich, with turkey. Likewise, people tend to like

things that similar people like. When a friend entered design school, she saw that just about every other

design student owned a Macintosh computer – which was no surprise, as she was already a lifetime Mac

user.

We can probably use these patterns predict these likes and dislikes. If we put a stranger in front of

you and asked whether you thought she liked the third Lord of the Rings film, you might have nothing

better than a guess. But, if she tells us she loved the first two films in the series, you'd be shocked if

she didn't like the third as well. On the other hand, if she says she hated the films, or asks, “Lord of the

what?” you'd rightly guess the third film is not on her favorites list.

Recommendation is all about predicting these patterns of taste, and using them to discover new and

desirable things you didn’t already know about.

Licensed to nancy chen <amigo4u2009@gmail.com>

13

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

2.1 What is recommendation?
You picked up this book from the shelf for a reason. Maybe you saw it next to other books you know

and find useful, and figure the bookstore has put it there since people who like those books tend to like

this one too. Maybe you saw this book on the shelf of a coworker, who you know shares your interest in

machine learning, or perhaps he recommended it to you directly.

In later chapters, we will explore some of the ways people make recommendations and discover new

things -- and of course how these processes are implemented in software with Mahout. We’ve already

mentioned a few strategies: to discover items we may like, we could look to what people with similar

tastes seem to like. On the other hand, we could figure out what items are like the ones we already like,

again by looking to others’ apparent preferences. These describe the two broadest categories of

recommender engine algorithms: “user-based” and “item-based” recommenders.

2.1.1 Collaborative filtering versus content-based recommendation
Strictly speaking, these are examples of “collaborative filtering” -- producing recommendations based

on, and only based on, knowledge of users’ relationships to items. These techniques require no

knowledge of the properties of the items themselves. This is, in a way, an advantage. This

recommender framework couldn’t care less whether the “items” are books, theme parks, flowers, or

even other people, since nothing about their attributes enters into any of the input.

There are other approaches based on the attributes of items, and are generally referred to as

“content-based” recommendation techniques. For example, if a friend recommended this book to you

because it’s a Manning book, and the friend likes other Manning books, then the friend is engaging in

something more like content-based recommendation. The thought is based on an attribute of the books:

the publisher. The Mahout recommender framework does not directly implement these techniques,

though it offers some ways to inject item attribute information into its computations. As such, it might

technically be called a collaborative filtering framework.

There’s nothing wrong with these techniques; on the contrary, they can work quite well. They are

necessarily domain-specific approaches, and would be hard to meaningfully codify into a framework. To

build an effective content-based book recommender, one would have to decide which attributes of a

book -- page count, author, publisher, color, font -- are meaningful, and to what degree. None of this

knowledge translates into any other domain; recommending books this way doesn’t help in recommend

pizza toppings.

For this reason, Mahout will not have much to say about this sort of recommendation. These ideas

can be built into, and on top of, what Mahout provides; an example of this will follow in a later chapter,

where we build a recommender for a dating site. Also later, after introducing the implementations that

Mahout provides for collaborative filtering-based recommenders, we’ll discuss their relation to content-

based approaches in more detail.

2.1.2 Recommenders hit the mainstream
Most people have by now seen recommendations implemented in practice on sites like Amazon or

Netflix: based on browsing and purchase history, the web site will produce a list of products that it

believes may appeal to you. This sort of recommender engine has been around since the 1990s, but

until recently has been the domain of fancy researchers with big computers. As these techniques have

become more mainstream, demand for them has increased, and supply of open-source implementations

Licensed to nancy chen <amigo4u2009@gmail.com>

14

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

has as well. This, along with increasingly accessible and cost-effective computing power, means that

recommender engines are becoming more accessible and widely used.

In fact, recommender techniques aren't just for recommending things like DVDs to customers. The

approach is general enough to estimate the strength of associations between many things. One could

recommend customers to DVDs using the same techniques – estimate which customer might like a

certain DVD the most. In a social network, a recommender could recommend people to people.

2.2 Running a first recommender engine
Mahout contains a recommender engine – several types, in fact, beginning with conventional user-based

and item-based recommenders. It also includes implementations based on “slope-one” techniques, a

new and efficient approach. You will also find experimental, preliminary implementations based on the

singular value decomposition (SVD) and more. In the upcoming chapters, we will review the

observations above in the context of Mahout and some real-world examples. We will look at how to

represent data, tour the available recommender algorithms, evaluate the effectiveness of

recommendations, tune and customize the recommender for a particular problem, and finally look at

distributing the computation.

2.2.1 Creating the input
To explore recommendations in Mahout we will start with a trivial example. First, we need input to the

recommender, data on which to base recommendations. This takes the form of “preferences” in Mahout-

speak. Because the recommender engines that are most familiar involve recommending items to users,

it will be most convenient to talk about preferences as associations from users to items – though as

noted above, these users and items could be anything. A preference consists of a user ID and an item

ID, and usually a number expressing the strength of the user's preference for the item. IDs in Mahout

are always numbers, integers in fact. The preference value could be anything, as long as larger values

mean stronger positive preferences. For instance, these values might be ratings on a scale of 1 to 5,

where the user has assigned “1” to items she can't stand, and “5” to her favorites.

Create a text file containing data about users, cleverly named “1” to “5”, and their preferences for

four books, which we will call “101” through “104”. In real-life, these might be customer IDs and

product IDs from a company database; Mahout doesn’t literally require that the users and items be

named with numbers! We'll write it down in simple comma-separated-value format. Copy the following

into a file and save it as intro.csv:

Licensed to nancy chen <amigo4u2009@gmail.com>

15

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Listing 2.1 Recommender input file intro.csv

With some study, we notice some trends. Users 1 and 5 seem to have similar tastes. They both like

book 101, like 102 a little less, and like 103 less still. The same goes for users 1 and 4, as they seem to

like 101 and 103 identically (no word on how user 4 likes 102 though). On the other hand, users 1 and

2 have tastes that seem to run counter – 1 likes 101 while 2 doesn't, and 1 likes 103 while 2 is just the

opposite. Users 1 and 3 don't overlap much – the only book both express a preference for is 101. See

figure 2.1 to perhaps visualize the relations, both positive and negative, between users and items.

Licensed to nancy chen <amigo4u2009@gmail.com>

16

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 2.1 Relationships between users 1 to 5 and items 101 to 107. Dashed lines represent associations that seem
negative -- the user does not seem to like the item much, but expresses a relationship to the item.

2.2.2 Creating a Recommender
So what book might we recommend to user 1? Not 101, 102 or 103 – he already knows about these

books, apparently, and recommendation is about discovering new things. Intuition suggests that

because users 4 and 5 seem similar to 1, we should recommend something that user 4 or user 5 likes.

That leaves 104, 105 and 106 as possible recommendations. On the whole, 104 seems to be the most

liked of these possibilities, judging by the preference values of 4.5 and 4.0 for item 104. Now, run the

following code:

Listing 2.2 A simple user-based recommender program with Mahout
package mia.recommender.ch02;

import org.apache.mahout.cf.taste.impl.model.file.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.*;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
import java.io.*;
import java.util.*;

class RecommenderIntro {

 public static void main(String[] args) throws Exception {

 DataModel model = new FileDataModel(new File("intro.csv")); A

 UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
 UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(2, similarity, model);

 Recommender recommender = new GenericUserBasedRecommender(
 model, neighborhood, similarity); B

 List<RecommendedItem> recommendations =
 recommender.recommend(1, 1); C

 for (RecommendedItem recommendation : recommendations) {
 System.out.println(recommendation);
 }

 }

}

A Load the data file
B Create the recommender engine
C For user 1, recommend 1 item

Licensed to nancy chen <amigo4u2009@gmail.com>

17

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

For brevity, through several more chapters of examples that follow, we will omit the imports, class

declaration, and method declaration, and instead repeat only the program statements themselves. To

help visualize the relationship between these basic components, see figure 2.2. Not all Mahout-based

recommenders will look like this -- some will employ different components with different relationships.

But this gives a sense of what’s going on in our example.

Figure 2.2 Simplified illustration of component interaction in a Mahout user-based recommender

While we will discuss each of these components in much more detail in the next two chapters, we

can summarize the role of each component now. A DataModel implementation stores and provides

access to all the preference, user and item data needed in the computation. A UserSimiliarity

implementation provides some notion of how similar two users are; this could be based on one of many

possible metrics or calculations. A UserNeighborhood implementation defines a notion of a group of

users that are most similar to a given user. Finally, a Recommender implementation pulls all these

components together to recommend items to users, and related functionality.

2.2.3 Analyzing the output
Compile and run this using your favorite IDE. The output of running the program in your terminal or IDE

should be: RecommendedItem[item:104, value:4.257081]

We asked for one top recommendation, and got one. The recommender engine recommended book

104 to user 1. Further, it says that the recommender engine did so because it estimated user 1’s

preference for book 104 to be about 4.3, and that was the highest among all the items eligible for

recommendations.

That’s not bad. We didn't get 107, which was also recommendable, but only associated to a user

with different tastes. We picked 104 over 106, and this makes sense when you note that 104 is a bit

more highly rated overall. Further, we got a reasonable estimate of how much user 1 likes item 104 –

something between the 4.0 and 4.5 that users 4 and 5 expressed.

The right answer isn't obvious from looking at the data, but the recommender engine made some

decent sense of it and returned a defensible answer. If you got a pleasant tingle out of seeing this

simple program give a useful and non-obvious result from a small pile of data, then the world of

machine learning is for you!

For clear, small data sets, producing recommendations is as trivial as it appears above. In real life,

data sets are huge, and they are noisy. For example, imagine a popular news site recommending news

Licensed to nancy chen <amigo4u2009@gmail.com>

18

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

articles to readers. Preferences are inferred from article clicks. But, many of these “preferences” may be

bogus – maybe a reader clicked an article but didn't like it, or, had clicked the wrong story. Perhaps

many of the clicks occurred while not logged in, so can’t be associated to a user. And, imagine the size

of the data set – perhaps billions of clicks in a month.

Producing the right recommendations from this data and producing them quickly are not trivial. Later

we will present the tools Mahout provides to attack a range of such problems by way of case studies.

They will show how standard approaches can produce poor recommendations or take a great deal of

memory and CPU time, and, how to configure and customize Mahout to improve performance.

2.3 Evaluating a Recommender
A recommender engines is a tool, a means to answer the question, “what are the best recommendations

for a user?” Before investigating the answers, we should investigate the question. What exactly is a

good recommendation? And how will we know when a recommender is producing them? The remainder

of this chapter pauses to explore evaluation of a recommender, because this is a tool that will be useful

when we begin looking at specific recommender systems.

The best possible recommender would be a sort of psychic that could somehow know, before you do,

exactly how much you would like every possible item that you've not yet seen or expressed any

preference for. A recommender that could predict all your preferences exactly would merely present all

other items ranked by your future preference and be done. These would be the best possible

recommendations.

And indeed most recommender engines operate by trying to do just this, estimating ratings for some

or all other items. So, one way of evaluating a recommender's recommendations is to evaluate the

quality of its estimated preference values – that is, evaluating how closely the estimated preferences

match the actual preferences.

2.3.1 Training data and scoring
Those “actual preferences” don't exist though. Nobody knows for sure how you'll like some new item in

the future (including you). This can be simulated to a recommender engine by setting aside a small part

of the real data set as test data. These test preferences are not present in the training data fed into a

recommender engine under evaluation -- which is all data except the test data. Instead, the

recommender is asked to estimate preference for the missing test data, and estimates are compared to

the actual values.

From there, it is fairly simple to produce a kind of “score” for the recommender. For example we

could compute the average difference between estimate and actual preference. With a score of this

type, lower is better, because that would mean the estimates differed from the actual preference values

by less. 0.0 would mean perfect estimation -- no difference at all between estimates and actual values.

Sometimes the root-mean-square of the differences is used: this is the square root of the average of

the squares of the differences between actual and estimated preference values. Again, lower is better.

Licensed to nancy chen <amigo4u2009@gmail.com>

19

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 Item 1 Item 2 Item 3

Actual
3.0 5.0 4.0

Estimate
3.5 2.0 5.0

Difference
0.5 3.0 1.0

Average
Difference

= (0.5 + 3.0 + 1.0) / 3 = 1.5

Root Mean
Square

=√((0.52 + 3.02 + 1.02) / 3) = 1.8484

Table 2.1 An illustration of the average difference, and root mean square calculation

Above, the table shows the difference between a set of actual and estimated preferences, and how

they are translated into scores. Root-mean-square more heavily penalizes estimates that are way off, as

with item 2 here, and that is considered desirable by some. For example, an estimate that’s off by 2

whole stars is probably more than twice as “bad” as one off by just 1 star. Because the simple average

of differences is perhaps more intuitive and easy to understand, we’ll use it in upcoming examples.

2.3.2 Running RecommenderEvaluator
Let's revisit the example code and instead evaluate the simple recommender we created, on our simple

data set:

Listing 2.3 Configuring and running an evaluation of a Recommender
RandomUtils.useTestSeed(); A
DataModel model = new FileDataModel(new File("intro.csv"));

RecommenderEvaluator evaluator =
 new AverageAbsoluteDifferenceRecommenderEvaluator();

RecommenderBuilder builder = new RecommenderBuilder() { B
 @Override
 public Recommender buildRecommender(DataModel model)
 throws TasteException {
 UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
 UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(2, similarity, model);
 return
 new GenericUserBasedRecommender(model, neighborhood, similarity);
 }
};

double score = evaluator.evaluate(
 builder, null, model, 0.7, 1.0); C
System.out.println(score);

A Used only in examples for repeatable result
B Builds the same Recommender as above
C Use 70% of data to train; test with other 30%

Licensed to nancy chen <amigo4u2009@gmail.com>

20

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Most of the action happens in evaluate(). Inside, the RecommenderEvaluator handles splitting

the data into a training and test set, builds a new training DataModel and Recommender to test, and

compares its estimated preferences to the actual test data.

Note that we don’t pass a Recommender to this method. This is because, inside, the method will

need to build a Recommender around a newly created training DataModel. So we must provide an

object that can build a Recommender from a DataModel – a RecommenderBuilder. Here, it builds

the same implementation that we tried in the first chapter.

2.3.3 Assessing the result
This program prints the result of the evaluation: a score indicating how well the Recommender

performed. In this case you should simply see: 1.0. Even though a lot of randomness is used inside the

evaluator to choose test data, the result should be consistent because of the call to

RandomUtils.useTestSeed(), which forces the same random choices each time. This is only used in

such examples, and unit tests, to guarantee repeatable results. Don’t use it in your real code.

What this value means depends on the implementation we used – here,

AverageAbsoluteDifferenceRecommenderEvaluator. A result of 1.0 from this implementation

means that, on average, the recommender estimates a preference that deviates from the actual

preference by 1.0.

A value of 1.0 is not great, on a scale of 1 to 5, but there is so little data here to begin with. Your

results may differ as the data set is split randomly, and hence the training and test set may differ with

each run.

This technique can be applied to any Recommender and DataModel. To use root-mean-square

scoring, replace AverageAbsoluteDifferenceRecommenderEvaluator with the implementation

RMSRecommenderEvaluator.

 Also, the null parameter to evaluate() could instead be an instance of DataModelBuilder,

which can be used to control how the training DataModel is created from training data. Normally the

default is fine; it may not be if you are using a specialized implementation of DataModel in your

deployment. A DataModelBuilder is how you would inject it into the evaluation process.

 The 1.0 parameter at the end controls how much of the overall input data is used. Here it means

“100%.” This can be used to produce a quicker, if less accurate, evaluation by using only a little of a

potentially huge data set. For example, 0.1 would mean 10% of the data is used and 90% is ignored.

This is quite useful when rapidly testing small changes to a Recommender.

2.4 Evaluating precision and recall
We could also take a broader view of the recommender problem: we don't have to estimate preference

values to produce recommendations. It’s not always necessary to present estimated preference values

to users. In many cases, all we want is an ordered list of recommendations, from best to worst. In fact,

in some cases we don't care much about the exact ordering of the list – a set of a few good

recommendations is fine.

Taking this more general view, we could also apply classic information retrieval metrics to evaluate

recommenders: precision and recall. These terms are typically applied to things like search engines,

which return some set of best results for a query out of many possible results.

Licensed to nancy chen <amigo4u2009@gmail.com>

21

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

A search engine should not return irrelevant results in the top results, although it should strive to

return as many relevant results as possible. “Precision” is the proportion of top results that are relevant,

for some definition of relevant. “Precision at 10” would be this proportion judged from the top 10

results. “Recall” is the proportion of all relevant results included in the top results. See figure 2.3 for a

visualization of these ideas.

Figure 2.3 An illustration of precision and recall in the context of search results

These terms can easily be adapted to recommenders: precision is the proportion of top

recommendations that are good recommendations, and recall is the proportion of good

recommendations that appear in top recommendations. We’ll define “good” in the next section.

2.4.1 Running RecommenderIRStatsEvaluator
Again, Mahout provides a fairly simple way to compute these values for a Recommender:

Listing 2.4 Configuring and running a precision and recall evaluation

RandomUtils.useTestSeed();
DataModel model = new FileDataModel(new File("intro.csv"));

RecommenderIRStatsEvaluator evaluator =
 new GenericRecommenderIRStatsEvaluator();
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
 @Override
 public Recommender buildRecommender(DataModel model)
 throws TasteException {
 UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
 UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(2, similarity, model);
 return
 new GenericUserBasedRecommender(model, neighborhood, similarity);
 }
};
IRStatistics stats = evaluator.evaluate(
 recommenderBuilder, null, model, null, 2,
 GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD,
 1.0); A

System.out.println(stats.getPrecision());
System.out.println(stats.getRecall());

Licensed to nancy chen <amigo4u2009@gmail.com>

22

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

A Evaluate precision and recall at 2

Without the call to RandomUtils.useTestSeed(), the result you see would vary significantly due

to random selection of training data and test data, and because the data set is so small here. But with

the call, the result ought to be:

0.75
1.0

Precision at 2 is 0.75; on average about a three quarters of recommendations were “good.” Recall at

2 is 1.0; all good recommendations are among those recommended.

But what exactly is a “good” recommendation here? Here, we actually asked the framework to

decide. We didn’t give it a definition. Intuitively, the most highly preferred items in the test set are the

good recommendations, and the rest aren’t.

Listing 2.5 User 5’s preference in test data set
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

Look at user 5 in our simple data set again. Let’s imagine we withheld as test data the preferences

for items 101, 102 and 103. The preference values for these are 4.0, 3.0 and 2.0. With these values

missing from the training data, we would hope that a recommender engine recommends 101 before

102, and 102 before 103, because we know this is the order in which user 5 prefers these items. But

would it be a good idea to recommend 103? It’s last on the list; user 5 doesn’t seem to like it much.

Book 102 is just average. Book 101 looks reasonable as its preference value is well above average.

Maybe we’d say 101 is a good recommendation; 102 and 103 are valid, but not good recommendations.

And this is the thinking that the RecommenderEvaluator employs. When not given an explicit

threshold that divides good recommendations from bad, the framework will pick a threshold, per user,

that is equal to the user's average preference value µ plus one standard deviation σ:

threshold = µ + σ

If you’ve forgotten your statistics, don’t worry. This says we’re taking items whose preference value

is not merely a little more than average (µ), but above average by a significant amount (σ). In practice

this means that about the 16% of items that are most highly preferred are considered “good”

recommendations to make back to the user. The other arguments to this method are similar to those

discussed before and are more fully documented in the project javadoc.

Licensed to nancy chen <amigo4u2009@gmail.com>

23

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

2.5 Evaluating the GroupLens data set
With these tools in hand, we will be able to discuss not only the speed, but also the quality of

recommender engines that we create and modify. Although examples with large amounts real data are

still a couple chapters away, we'll take a moment to quickly evaluate performance on a small data set.

2.5.1 Extracting the recommender input
GroupLens (http://grouplens.org/) is a research project that provides several data sets of different

sizes, each derived from real users' ratings of movies. It is one of several large, real-world data sets

available, and we will explore more of them in this book. From grouplens.org, locate and download the

“100K data set”, currently accessible at http://www.grouplens.org/node/73. Unarchive the file you

download, and within, find the file called ua.base. This is a tab-delimited file with user IDs, item IDs,

ratings (preference values), and some additional information.

Will this file work? Tabs, not commas, separate its field, and it includes an extra field of information

at the end as well. Yes, the file will work with FileDataModel as-is. Return to the previous code in

listing 2.3 where we built a RecommenderEvaluator, and, try passing in the location of ua.base

instead of the small data file we constructed. Run it again. This time, evaluation should take a couple

minutes, as it's now based on 100,000 preference values instead of a handful.

At the end, you should get a number around 0.9. That’s not bad, though somehow being off by

almost a whole point on a scale of 1 to 5 doesn't sound great. Perhaps the particular Recommender

implementation we tried isn't quite the best for this kind of data?

2.5.2 Experimenting with other Recommenders
Let's test-drive a “slope-one” recommender on this data set, a simple algorithm that we will discuss in

the upcoming chapter on recommender algorithms themselves. It's as easy as replacing the

RecommenderBuilder with one that uses

org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommeder, like so:

Listing 2.6 Changing the evaluation program to run a SlopeOneRecommender
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
 @Override
 public Recommender buildRecommender(DataModel model) throws TasteException {
 return new SlopeOneRecommender(model);
 }
};

Run the evaluation again. You should find it is both much quicker, and, produces an evaluation result

around 0.748. That’s a move in the right direction.

This is not to say slope-one is always better or faster. Each algorithm has its own characteristics and

properties that can interact in hard-to-predict ways with a given data set. Slope-one happens to be

quick to compute recommendations at runtime, but takes significant time to pre-compute its internal

data structures before it can start, for example. The user-based recommender we tried first could be

faster and more accurate on other data sets. We will explore the relative virtues of each algorithm in an

upcoming chapter.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://grouplens.org/�
http://www.grouplens.org/node/73�

24

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

It highlights how important testing and evaluation on real data are – and how relatively painless it

can be with Mahout. Soon we will be evaluating many recommenders.

2.6 Summary
In this chapter we introduced the idea of a recommender engine. We even created small input to a

simple Mahout Recommender, ran it through a simple computation and explained the results.

We then took time to look at evaluating the quality of a recommender engine’s output, before

proceeding, because we will need to do this frequently in the coming chapters. This chapter covered

evaluating the accuracy of a Recommender’s estimated preferences, as well as traditional precision and

recall metrics as applied to recommendations. Finally we tried evaluating a real data set from GroupLens

and observed how evaluations can be used to empirically discover improvements to a recommender

engine.

Before studying recommender engines in detail, we need to spend some time with another

foundational concept in Mahout in the next chapter: representation of data.

Licensed to nancy chen <amigo4u2009@gmail.com>

25

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

3
Representing Data

This chapter covers:

 How Mahout represents recommender data

 DataModel implementations and usage

 Data without preference values

The quality of recommendations is largely determined by the quantity and quality of data. “Garbage in,

garbage out” was never more true than here. Likewise, recommender algorithms are data-intensive and

runtime performance is greatly affected by quantity of data and its representation. This section explores

key classes in Mahout for representing and accessing recommender-related data.

3.1 Representing Preferences
The input to a recommender engine is preference data -- who likes what, and how much. So, the

input to Mahout recommenders is simply a set of user ID, item ID, preference value tuples – a large set,

of course. Sometimes, even preference values are omitted.

3.1.1 The Preference object
A Preference is the most basic abstraction, representing a single user ID, item ID, and a preference

value. One object represents one user's preference for one item. Preference is an interface, and the

implementation one is most likely to use is GenericPreference. For example the following creates a

representation of user 123’s preference value of 3.0 for item 456: new GenericPreference(123,
456, 3.0f).

How is a set of Preferences represented? If you gave reasonable answers like

Collection<Preference> or Preference[], you'd be wrong in most cases in the Mahout APIs.

Collections and arrays turn out to be quite inefficient for representing large numbers of Preference

objects. If you’ve never investigated the overhead of an Object in Java, prepare to be shocked!

A single GenericPreference contains 20 bytes of useful data: an 8-byte user ID (Java long), 8-

byte item ID (long), and 4-byte preference value (float). The object’s existence entails a startling

Licensed to nancy chen <amigo4u2009@gmail.com>

26

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

amount of overhead: 28 bytes! The actual amount of overhead varies depending on the JVM’s

implementation; this figure was taken from Apple's 64-bit Java 6 VM for Mac OS X 10.6. This includes

an 8-byte reference to the object, and, due to Object overhead and other alignment issues, another 20

bytes of space within the representation of the object itself. Hence a GenericPreference object

already consumes 140% more memory than it needs to, just due to overhead.

What can be done? In the recommender algorithms, it is common to need a collection of all

preferences associated to one user, or one item. In such a collection, the user ID, or item ID, will be

identical for all Preference objects, which seems redundant.

3.1.2 PreferenceArray and implementations
Enter PreferenceArray, an interface whose implementations represent a collection of preferences

with an array-like API. For example, GenericUserPreferenceArray represents all preferences

associated to one user. Internally, it maintains a single user ID, an array of item IDs, and an array of

preference values. The marginal memory required per preference in this representation is then only 12

bytes (one more 8-byte item ID and 4-byte preference value in an array). Compare this to the

approximately 48 bytes required for a full Preference object. The four-fold memory savings alone

justifies this special implementation, but it also provides a small performance win, as far fewer objects

must be allocated and examined by the garbage collector. Compare figures 3.1 and 3.2 to understand

how the savings is accomplished.

Figure 3.1 A less-efficient representation of preferences using an array of Preference objects. Gray areas represent,
roughly, Object overhead. White areas are data, including Object references.

Figure 3.2 A more efficient representation using GenericUserPreferenceArray.

The code below shows typical construction and access of a PreferenceArray:

Listing 3.1 Setting preference values in a PreferenceArray
PreferenceArray user1Prefs = new GenericUserPreferenceArray(2);
user1Prefs.setUserID(0, 1L); A

Licensed to nancy chen <amigo4u2009@gmail.com>

27

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

user1Prefs.setItemID(0, 101L);
user1Prefs.setValue(0, 2.0f); B
user1Prefs.setItemID(1, 102L);
user1Prefs.setValue(1, 3.0f); C
Preference pref = user1Prefs.get(1); D

A Sets user ID for all preferences
B User 1 expresses preference 2.0 for item 101 now
C User 1 expresses preference 3.0 for 102
D Materializes a Preference for item 102

There exists, likewise, an implementation called GenericItemPreferenceArray, which

encapsulates all preferences associated to an item, rather than user. Its purpose and usage are entirely

analogous.

3.2 Speeding up collections
So, wonderful, Mahout has already reinvented an “array of Java objects,” you are thinking. Buckle up,

because that’s not the end of it. Did we mention scale was important? Hopefully you are already

persuaded that the amount of data we will face with these techniques is unusually huge, and may merit

unusual responses.

The reduced memory requirement that PreferenceArray and its implementations bring is well

worth its complexity. Cutting memory requirements by 75% isn’t just saving a couple megabytes -- it’s

saving tens of gigabytes of memory at reasonable scale. That’s the difference between fitting and not

fitting on your existing hardware, maybe. It’s the difference between having to invest in a lot more RAM

and maybe a new 64-bit system and not having to. That’s a small but real energy savings. It matters.

3.2.1 FastByIDMap and FastIDSet
You won’t be surprised to hear that the Mahout recommenders make heavy use of typical data

structures like maps and sets, but do not use the normal Java Collections implementations like

TreeSet and HashMap. Instead, throughout the implementation and API you will find FastByIDMap

and FastIDSet. These are something like a Map and Set, but specialized explicitly and only for what

Mahout recommenders need. They reduce memory footprint rather than significantly increase in

performance.

None of this should be construed as a criticism of the Java Collections framework. On the contrary,

they are well designed for their purpose of being effective in a wide range of contexts. They cannot

make many assumptions about usage patterns. Mahout’s needs are much more specific, and stronger

assumptions about usage are available. The key differences are:

 Like HashMap, FastByIDMap is hash-based. It uses linear probing, rather than separate

chaining, to handle hash collisions. This avoids the need for an additional Map.Entry object per
entry; as we’ve discussed, Objects consume a surprising amount of memory.

 Keys and members are always long primitives in Mahout recommenders, not Objects. Using
long keys saves memory and improves performance.

 The Set implementation is not implemented using a Map underneath

 FastByIDMap can act like a cache, as it has a notion of “maximum size”; beyond this size,

Licensed to nancy chen <amigo4u2009@gmail.com>

28

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

infrequently-used entries will be removed when new ones are added

The storage difference is significant: FastIDSet requires about 14 bytes per member on average,

compared to 84 bytes for HashSet. FastByIDMap consumes about 28 bytes per entry, compared to

again about 84 bytes per entry for HashMap. It goes to show that when one can make stronger

assumptions about usage, significant improvements are possible – here, largely in memory

requirements. Given the volume of data in question for recommender systems, these custom

implementations more than justify themselves. So, where are these clever classes used?

3.3 In-memory DataModels
The abstraction that encapsulates recommender input data in Mahout is DataModel. Implementations

of DataModel provide efficient access to data required by various recommender algorithms. For

example, a DataModel can provide a count or list of all user IDs in the input data, or provide all

preferences associated to an item, or a count of all users who express a preference for a set of item IDs.

Here we will focus on some of the highlights; a more detailed account of DataModel’s API can be found

in the online javadoc documentation.

3.3.1 GenericDataModel
The simplest implementation available is an in-memory implementation, GenericDataModel. It is

appropriate when you want to construct your data representation in memory, programmatically, rather

than base it on an existing external source of data such as a file or relational database. It simply

accepts preferences as inputs, in the form of a FastByIDMap mapping user IDs to PreferenceArrays

with data for those users.

Listing 3.2 Defining input data programmatically with GenericDataModel
FastByIDMap<PreferenceArray> preferences =
 new FastByIDMap<PreferenceArray>();
PreferenceArray prefsForUser1 = new GenericUserPreferenceArray(10); A
prefsForUser1.setUserID(0, 1L);
prefsForUser1.setItemID(0, 101L); B
prefsForUser1.setValue(0, 3.0f); B
prefsForUser1.setItemID(1, 102L);
prefsForUser1.setValue(1, 4.5f);
… (8 more)

preferences.put(1L, prefsForUser1); C

DataModel model = new GenericDataModel(preferences); D

A Set up PreferenceArray for user 1
B Add the first of 10 preferences
C Attach user 1’s preference to input
D Create the DataModel

How much memory does a GenericDataModel use? The number of preferences stored dominates

memory consumption. Some empirical testing reveals that it consumes about 28 bytes of Java heap

space per preference. This includes all data and other supporting data structures like indexes. You can

Licensed to nancy chen <amigo4u2009@gmail.com>

29

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

try this if you like, as well: load a GenericDataModel, call System.gc() a few times, then compare

the result of Runtime.totalMemory() and Runtime.freeMemory(). This is crude, but should give

a reasonable estimate of how much memory the data is consuming.

3.3.1 File-based data
You will not typically use GenericDataModel directly. Instead, you will likely encounter it via

FileDataModel – which reads data from a file and stores the resulting preference data in memory, in

a GenericDataModel.

Just about any reasonable file will do – we already saw an example of such a file in the first section,

where we produced a simple comma-separated-value file where each line contained one datum: user

ID, item ID, preference value. Tab-separated files will work too. zipped and gzipped files will also

work, if their names end in “.zip” or “.gz”, respectively. It's a good idea to store this data in a

compressed format, because it can be huge, and compresses well.

3.3.2 Refreshable components
While we’re talking about loading data, let’s talk about reloading data, and the Refreshable interface,

which several components in the Mahout recommender-related classes implement. It exposes a single

method, refresh(Collection<Refreshable>). It simply requests that the component reload,

recompute and otherwise refresh its own state, based on the latest input data available, after asking its

dependencies to do likewise. For example, a Recommender will likely call refresh() on the

DataModel on which it is based before recomputing its own internal indexes of the data. Cyclical

dependencies and shared dependencies are managed intelligently, as illustrated in figure 3.3.

Figure 3.3 An illustration of dependencies in a simple user-based recommender system, and the order in which
components refresh their data structures.

Note that FileDataModel will only reload data from the underlying file when asked to do so. It will

not automatically detect updates or regularly attempt to reload the file’s contents, for performance

reasons. This is what the refresh() method is for. We probably don’t want to just cause a

FileDataModel to refresh, but also any objects that depends on its data. For this reason, you will

almost surely call refresh() on a Recommender in practice:

Listing 3.3 Triggering refresh of a recommender system

Licensed to nancy chen <amigo4u2009@gmail.com>

30

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

DataModel dataModel = new FileDataModel(new File("input.csv");
Recommender recommender = new SlopeOneRecommender(dataModel);
...
recommender.refresh(null); A

A Refreshes the DataModel, then itself
Because scale is a pervasive theme of this book, here we should emphasize another useful feature of

FileDataModel: “update files”. Data changes, and usually the data that changes is only a tiny subset

of all the data – maybe even just a few new data points, in comparison to a billion existing ones.

Pushing around a brand new copy of a file containing a billion preferences just to push a few updates is

wildly inefficient.

3.3.3 Update files
FileDataModel supports update files. These are just more data files which are read after the main

data file, and overwrite any previously read data. New preferences are added; existing ones are

updated. “Deletes” are handled by providing an empty preference value string.

For example, consider the following update file.

Listing 3.4 Sample update file
1,108,3.0
1,103,

This says, “update (or create) user 1's preference for item 108, and set the value to 3.0” and

“remove user 1's preference for item 103”.

These update files must simply exist in the same directory as the main data file, and their names

must begin with the same prefix, up to the first period. If the main data file is foo.txt.gz, then

update files might be named foo.1.txt.gz and foo.2.txt.gz. Yes, they may be compressed.

3.4 Database-based data
Sometimes data is just too large to fit into memory. Once the data set is several tens of millions of

preferences, memory requirements grow to several gigabytes. This amount of memory may be

unavailable in some contexts.

It is possible to store and access preference data from a relational database; Mahout supports this.

Several classes in Mahout's recommender implementation will attempt to take advantage by pushing

computations into the database for performance.

Note that running a recommender engine from data in a database will be much slower, by orders of

magnitude, than using in-memory data representations. It’s no fault of the database; properly tuned

and configured, a modern database is excellent at indexing and retrieving information efficiently, but

the overhead of retrieving, marshalling, serializing, transmitting and deserializing result sets is still

much greater than the overhead of reading data from optimized in-memory data structures. This adds

up quickly for recommender algorithms, which are data intensive. It may yet be desirable in cases

where there is no choice, or, where the data set is not huge and reusing an existing table of data is

desirable for integration purposes.

Licensed to nancy chen <amigo4u2009@gmail.com>

31

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

3.4.1 JDBC and MySQL
Preference data is accessed via JDBC, using implementations of JDBCDataModel. At the moment, the

only concrete subclass of JDBCDataModel is one written for use with MySQL 5.x:

MySQLJDBCDataModel. It may well work with older versions of MySQL, or even other databases, as it

tries to use standard ANSI SQL where possible. It is not difficult to create variations, as needed, to use

database-specific syntax and features. Here, we will explore the MySQL implementation here to

illustrate.

Table 3.1 Illustration of default table schema for ‘taste_preferences’ in MySQL

user_id item_id preference
BIGINT NOT NULL BIGINT NOT NULL FLOAT NOT NULL

INDEX INDEX

PRIMARY KEY

By default, the implementation assumes that all preference data exists in a table called

taste_preferences, with a column for user IDs named user_id, column for item IDs named

item_id, and column for preference values named preference.

3.4.2 Configuring via JNDI
It also assumes that the database containing this table is accessible via a DataSource object

registered to JNDI3

Listing 3.5 Configuring a JNDI DataSource in Tomcat

 name jdbc/taste. What is JNDI, you may be asking? If you are using a

recommender engine in a web application, and are using a servlet container like Tomcat or Resin, then

you are likely already using it indirectly. If you are configuring your database details through the

container (such as through Tomcat’s server.xml file) then you will find that typically makes this

configuration available as a DataSource in JNDI. You can configure a database as jdbc/taste with

details about the database that the JDBCDataModel ought to use. Here’s a snippet suitable for use

with Tomcat:

<Resource
 name="jdbc/taste"
 auth="Container"
 type="javax.sql.DataSource"
 username="user"
 password="password"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/mydatabase"/>

These default names can be overridden to reflect your environment. You don’t have to name your

database and column exactly as above.

3 Java Naming and Directory Interface; a key part of Sun’s J2EE (Java 2 Enterprise Edition) specification

Licensed to nancy chen <amigo4u2009@gmail.com>

32

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

3.4.3 Configuring programmatically
You also don’t have to use JNDI directly and can instead pass a DataSource in directly. Here's a full

example of configuring a MySQLJDBCDataModel, including use of the MySQL Connector/J

(http://www.mysql.com/products/connector/) driver and DataSource with customized table and

column names:

Listing 3.6 Configuring a DataSource programmatically
MysqlDataSource dataSource = new MysqlDataSource();
dataSource.setServerName("my_user");
dataSource.setUser("my_password");
dataSource.setPassword("my_database_host");
JDBCDataModel dataModel = new MySQLJDBCDataModel(
 dataSource, "my_prefs_table", "my_user_column",
 "my_item_column", "my_pref_value_column");

This is all that’s needed to use data in a database for recommendations. You’ve now got a

DataModel compatible with all the recommender components! However, as the documentation for

MySQLJDBCDataModel makes clear, producing the recommendations efficiently requires proper

configuration of the database and the driver. In particular:

The user ID and item ID columns should be non-nullable, and must be indexed.

The primary key must be a composite of user ID and item ID.

Select data types for the columns that correspond to Java's long and float types. In MySQL, these

are BIGINT and FLOAT.

Look to tuning the buffers and query caches (see javadoc)

When using MySQL's Connector/J driver, set driver parameters such as

cachePreparedStatements to true. Again, see the javadoc for suggested values.

This certainly covers the basics of working with DataModels in Mahout’s recommender engine

framework. One significant variant on these implementations should be discussed: representing data

when there are no preference values. This may sound strange, because it seems like preference values

are the core of the input data required by a recommender engine. Sometimes ignoring some data helps.

3.5 Ignoring preference values
Less is more, they say. Sometimes this is true about the input to a recommender engine. More data is

generally better -- if it is “good” data. Unfortunately, sometimes preference values are noisy, and simply

forgetting the particular values is useful. At least, sometimes, it doesn’t hurt.

We aren’t talking about forgetting all associations between users and items, for then we would have

no data at all. We’re talking about ignoring the purported strength of the preference. For example,

rather than consider what movies you all have seen and how you’ve rated them to recommend a new

movie, we might do as well to simply consider what movies you have seen. Rather than know “user 1

expresses preference 4.5 for movie 103”, we might try forgetting the 4.5 and taking, as input, data like

“user 1 is associated to movie 103.” Figure 3.4 attempts to illustrate the difference.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://www.mysql.com/products/connector/�

33

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 3.4 An illustration of user relationships to items with preference values (left) and “boolean data”, without
preference values (right)

In Mahout-speak, we will call these “boolean preferences,” for lack of a better term, because an

association can have one of two values: exists, or doesn’t exist. We do not mean that the data consists

of “yes” and “no” preferences for items, that each datum expresses whether a user “likes” or “dislikes”

an item. This would give three states for every possible user-item association: likes, dislikes, or nothing

at all.

3.5.1 When to ignore values
Why would one do this, ignore preference values? Most commonly, this happens when preference values

aren’t available to begin with. For example, imagine a news site recommending articles to users based

on previously viewed articles. A “view” establishes some association between the user and item, but

that’s about all that is available. It is not common for users to rate articles. It’s not even common for

users to do anything more than view an article. All that’s known in this case is which articles the user is

associated to, and little more.

This might be beneficial in a context where liking and not-liking an item are relatively similar states,

at least when compared with having no association at all. Remember the example about the fellow who

doesn’t like Rachmaninoff? There is a vast world of music out there, some of which he’s never even

heard of (like Norwegian death metal). That he even knows Rachmaninoff enough to dislike it indicates

an association to this composer, even a possible preference for things like it, that’s significant when

considered in comparison to the vast world of things he doesn’t even know about. Although he might

rate Rachmaninoff a “1” and Brahms a “5”, if pressed to do so, in reality these both communicate

something similar. Forgetting the actual ratings, therefore, reflects that fact and may even make for

better recommendations.

You may object that this is the user’s fault. Shouldn’t he think of Rachmaninoff as a “4”, because it’s

stuff like Norwegian death metal that’s conceptually a “1” to him? Maybe so, but that’s life. This only

underscores the fact that input is often problematic. You may also object that, although this reasoning

stands up when recommending music taken from all genres, that we’d probably do worse by forgetting

this data if we were just recommending from classical composers. This is true; a good solution for one

domain does not always translate to others.

Licensed to nancy chen <amigo4u2009@gmail.com>

34

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

3.5.2 In-memory representations without preference values
Not having preference values dramatically simplifies the representation of preference data, and this

enables better performance and significantly lower memory usage. As we saw, Mahout Preference

objects store the preference value as a 4-byte float in Java. At least, not having preference values in

memory ought to save 4 bytes per preference values. Indeed, repeating the same rough testing as

before shows the overall memory consumption per preference drops by about 4 bytes to 24 bytes on

average.

We get this value by testing the twin of GenericalDataModel, called

GenericBooleanPrefDataModel. This is likewise an in-memory DataModel implementation, but

one which internally does not store preference values. In fact it simply stores associations as

FastIDSets -- for example, one for each user, to represent the item IDs that that user is associated

to. No preference values are found.

Because it is also a DataModel, it is a drop-in replacement for GenericDataModel. Some

methods of DataModel will be faster with this new implementation, such as getItemIDsForUser(),

because the implementation already has this readily available. Some will be slower such as

getPreferencesFromUser(), because the new implementation does not use PreferenceArrays

and must materialize one to implement the method.

You may wonder what getPreferenceValue() returns, because there is no such thing to this

implementation? It doesn’t throw UnsupportedOperationException; it returns the same fixed,

artificial value in all cases: 1.0. This is important to note, because components that rely on a preference

value will still get one from this DataModel. These preference values are artificial and fixed, which can

cause some subtle issues, as we will soon see.

Let’s observe, by returning to the GroupLens example from the last chapter. Here is the same code

snippet that we began with, but set up to use a GenericBooleanPrefDataModel:

Listing 3.7 Creating and evaluating with boolean data
DataModel model = new GenericBooleanPrefDataModel(
 new FileDataModel(new File("ua.base"))); A

RecommenderEvaluator evaluator =
 new AverageAbsoluteDifferenceRecommenderEvaluator();

 RecommenderBuilder builder = new RecommenderBuilder() {
 @Override
 public Recommender buildRecommender(DataModel model)
 throws TasteException {
 UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
 UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(10, similarity, model);
 return
 new GenericUserBasedRecommender(model, neighborhood, similarity);
 }
 };

 DataModelBuilder modelBuilder = new DataModelBuilder() {
 @Override
 public DataModel buildDataModel(
 FastByIDMap<PreferenceArray> trainingData) {
 return new GenericBooleanPrefDataModel(

Licensed to nancy chen <amigo4u2009@gmail.com>

35

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 GenericBooleanPrefDataModel.toDataMap(trainingData)); B
 }
 };

 double score = evaluator.evaluate(
 recommenderBuilder, modelBuilder, model, 0.9, 1.0);
 System.out.println(score);

A Use GenericBooleanPrefDataModel, based on same data
B Build a GenericBooleanPrefDataModel here too

The twist here is the DataModelBuilder. This is the way we can control how the evaluation

process will construct its DataModel for training data, rather than let it construct a simple

GenericDataModel. GenericBooleanPrefDataModel takes its input in a slightly different way -- a

bunch of FastIDSets rather than PreferenceArrays -- and the convenience method toDataMap()

exists to translate between the two. Before proceeding to the next section, we suggest you try running

this code.

3.5.3 Selecting compatible implementations
To be clear: the following section is largely about what not to do!

You may be surprised to see the evaluation result is NaN, or “not a number”. Here, it means that the

evaluation couldn’t come up with any data on which to base a score at all! If you were to debug, you

would find that the recommender is estimating all preferences to be NaN too. And if you dug deeper

still, you would find that no neighborhoods of similar users can be found for any user, and this is

because the PearsonCorrelationSimilarity metric is returning NaN as the similarity between

every pair of users -- unknown!

This highlights a specific point about this Pearson correlation, which we will cover in the next

chapter. It makes a more general point as well. The specific problem here is that we’re applying a

similarity metric based on preference values, the Pearson correlation, in a situation where there aren’t

any real preference values. The Pearson correlation between two data sets will be undefined if the two

data sets are simply the same value, repeated4

More generally, not every implementation will work well with every other, even though components

are implementing a set of standard interfaces for interchangeability. The “incompatibility” here was clear

from the evaluation; some other interactions are subtler.

. And here, the DataModel pretends that all preference

values are 1.0.

3.5.4 Applying appropriate similarity metrics
We can fix the immediate problem by applying a more suitable similarity metric.

LogLikelihoodSimilarity is one such implementation, because it is not based on actual preference

values. We’ll discuss these similarity metrics later. Plug it in, in place of

PearsonCorrelationSimilarity. The result is, at least, a number: 0.0. Wow, that means perfect

prediction!

4 The Pearson correlation is a ratio of the covariance of the two data sets, to their standard deviations, and when all data are 1,
both of these values are 0, giving a correlation of 0/0, which is certainly “not a number” as far as Java is concerned.

Licensed to nancy chen <amigo4u2009@gmail.com>

36

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Not quite. We’re evaluating the average difference between estimated and actual preference, in a

world where every preference value is 1. Of course the result is 0; the test itself is invalid because it will

only ever result in 0.

However a precision and recall evaluation is still valid. Let’s try it.

Listing 3.8 Evaluating precision and recall with boolean data
DataModel model = new GenericBooleanPrefDataModel(
 new FileDataModel(new File("ua.base")));

RecommenderIRStatsEvaluator evaluator =
 new GenericRecommenderIRStatsEvaluator();
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
 @Override
 public Recommender buildRecommender(DataModel model) {
 UserSimilarity similarity = new LogLikelihoodSimilarity(model);
 UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(10, similarity, model);
 return new GenericBooleanPrefUserBasedRecommender(
 model, neighborhood, similarity);
 }
};
DataModelBuilder modelBuilder = new DataModelBuilder() {
 @Override
 public DataModel buildDataModel(FastByIDMap<PreferenceArray> trainingData) {
 return new GenericBooleanPrefDataModel(
 GenericBooleanPrefDataModel.toDataMap(trainingData));
 }
};
IRStatistics stats = evaluator.evaluate(
 recommenderBuilder, modelBuilder, model, null, 10,
 GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD,
 1.0);
System.out.println(stats.getPrecision());
System.out.println(stats.getRecall());

The result is about 15.5% for both precision and recall. That’s not great; recall that this means only

about 1 in 6 recommendations returned are “good” and about 1 in 6 good recommendations are

returned.

 This is traceable to a third problem, illustrated here. Preference values are still lurking in one place

here: GenericUserBasedRecommender. Of course, it still orders its recommendations based on

estimate preference, but these values are all 1.0. The ordering is therefore essentially random. So, we

introduce GenericBooleanPrefUserBasedRecommender (yes, that’s about as long as the class

names will get). This variant will produce a more meaningful ordering in its recommendations. It

weights items that are associated to many other similar users, and to users that are more similar, more

heavily. It does not produce a weighted average. So, try substituting this implementation and run the

code again. The result is 18% or so. Better, but barely. This strongly suggests this isn’t a terribly

effective recommender system for this data. Our purpose here isn’t to “fix” this, merely to look at how

to effectively deploy “boolean” data in Mahout recommenders.

Licensed to nancy chen <amigo4u2009@gmail.com>

37

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Boolean variants of the other DataModels we’ve seen so far exist as well. FileDataModel will

automatically use a GenericBooleanPrefDataModel internally, if its input data contains no

preference values (lines of the form userID,itemID only). Similarly, MySQLBooleanPrefDataModel

is suitable for use with a database table without a preference value column. It’s otherwise entirely

analogous. This implementation in particular can take advantage of many more shortcuts in the

database to improve performance.

Finally, if you’re wondering if you can mix boolean and non-boolean data: no. In such a case, it’s

desirable to treat the data set as having preference values, since some preference values do exist.

Those missing an actual preference value can and should be inferred by some means, even if it’s as

simple as filling in the simple average of all existing preference values as a placeholder.

3.6 Summary
In this chapter we looked at how preference data is represented in a Mahout recommender. This

includes Preference objects, but also specialized array and collection-like implementations like

PreferenceArray and FastByIDMap. These specializations exist largely to reduce memory usage.

We looked at DataModels, which are the abstraction for recommender input as a whole.

GenericDataModel stores data in memory, as does FileDataModel, after reading input from a file.

JDBCDataModel and implementations exist to support data based on a relational database table; we

examined integration with MySQL in particular.

Finally we looked at how all this changes when the input data does not contain preference values --

only user-item associations. Sometimes this is all that is available, and, it certainly requires less

storage. We looked at subtle complications that this sort of data model can cause when used with other

standard components, such as PearsonCorrelationSimilarity, which are not suitable for this kind

of input. We examined several such problems and fixed them in order to get a functioning recommender

based on boolean input data.

Licensed to nancy chen <amigo4u2009@gmail.com>

38

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

4
Making Recommendations

This chapter covers

 User-based recommenders, in depth

 Similarity metrics

 Item-based and other recommenders

Having thoroughly discussed evaluating recommenders and representing the data input to

recommender, we are at last qualified to examine recommenders themselves in detail. This is where the

real action begins.

4.1 User-based recommendation
If you've seen a recommender algorithm explained, chances are it was a user-based recommender

algorithm. This is the approach described in some of the earliest research in the field. The label “user-

based” is somewhat imprecise, as any recommender algorithm is based on user- and item-related data.

The defining characteristic of a user-based recommender algorithm is that it is based upon some notion

of similarities between users. In fact, you’ve probably encountered this type of “algorithm” in everyday

life.

4.1.1 When recommendation goes wrong
Have you ever received a CD as a gift? I did, as a young teenage boy, by well-meaning adults. One of

these adults seem to have headed down to the local music store and cornered an employee, where the

following scene unfolded:

ADULT: I am looking for a CD for a teenager.

EMPLOYEE: OK, what does this teenager like?

ADULT: Oh, you know, what all the young kids like these days.

Licensed to nancy chen <amigo4u2009@gmail.com>

39

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

EMPLOYEE: What kind of music or bands?

ADULT: It's all noise to me. I don't know.

EMPLOYEE: Uh, well… I guess lots of young people are buying this boy band album

here by “New 2 Town”?

ADULT: Sold!

You can guess the result. Needless to say, they instead give me gift certificates now. I am afraid this

example of user-based recommendation gone wrong has played out many times. What happened? The

intuition was sound: because teenagers have relatively related tastes in music, one teenager would be

more likely to enjoy an album that other teenagers have enjoyed. Basing recommendations on similarity

among people is quite reasonable.

Of course, recommending an album from a band that teenage girls swoon over probably isn’t the

best thing for a teenage boy. The error here was that the similarity metric wasn't effective. Yes,

teenagers as a group have relatively homogenous tastes: you're more likely to find pop songs than

zydeco or classical music. But, the similarity is too weak to be useful: it’s not true that teenage girls

have enough in common with teenage boys when it comes to music to form the basis of a

recommendation.

4.1.2 When recommendation goes right
Let's rewind our scenario and imagine how it could have gone better:

ADULT: I am looking for a CD for a teenage boy.

EMPLOYEE: OK, what does he like?

ADULT: Oh, you know, he likes what all the young kids like these days.

EMPLOYEE: What kind of music or bands?

ADULT: I don't know, but his best friend is always wearing a “Bowling In Hades” t-

shirt.

EMPLOYEE: Ah yes, a very popular nu-metal band from Cleveland. Well, we do have

the new Bowling In Hades best-of album over here, “Impossible Split: The Singles

1997-2000”...

Now that's better. The recommendation was based on the assumption that two good friends share

somewhat similar taste in music. That’s more reasonable. With a reliable similarity metric in place, the

outcome is probably better. It's far more likely that these best friends share a love for Bowling In Hades

than any two random teenagers. Here's another way it could have gone better:

Licensed to nancy chen <amigo4u2009@gmail.com>

40

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

ADULT: I am looking for a CD for a teenage boy.

EMPLOYEE: OK, what does he like?

ADULT: Oh, you know, he likes what all the young kids like these days.

EMPLOYEE: What kind of music or bands?

ADULT: “Music”? Ha, well, I wrote down the bands from posters on his bedroom wall.

The Skulks, Rock Mobster, the Wild Scallions... mean anything to you?

EMPLOYEE: I see, well, my kid is into some of those albums too. And he won't stop

talking about some new album from Diabolical Florist, so maybe...

Well done, adults. Now, they've inferred a similarity based directly on tastes in music. Because the

two kids in question both prefer some of the same bands, it stands to reason they'll each like a lot in the

rest of each other’s collections. That’s even better reasoning than guessing their tastes are similar

because they’re friends. They’ve actually based their idea of similaritybetween the two teenagers on

observed tastes in music. This is the essential logic of a user-based recommender system.

4.2 Exploring the user-based recommender
If we let these two adults keep going, they'd further refine their reasoning. Why base the choice of gift

on just one other kid's music collection? How about finding several other similar kids? They would pay

attention to which kids seemed most similar – most same posters and t-shirts and CDs scattered on top

of stereos – and look at which bands seemed most important to those most similar kids, and figure

those make the best gift.

4.2.1 The algorithm
The user-based recommender algorithm comes out of this intuition. We might describe the process of

recommending items to some user, denoted by u, like so:

for every item i that u has no preference for yet
 for every other user v that has a preference for i
 compute a similarity s between u and v
 incorporate v's preference for i, weighted by s, into a running average
return the top items, ranked by weighted average

The outer loop simply suggests we should consider every known item (that the user hasn’t already

expressed a preference for -- they’re already well aware of those items and what they think of them) as

a candidate for recommendation. The inner loop suggests we look to any other user who has expressed

a preference for this candidate item, and see what his or her preference value for it was. In the end, we

average these values to come up with an estimate -- a weighted average, that is. We weight each

preference value in the average by how similar that user is to our target user. The more similar a user,

the more heavily we weight his or her preference value.

Licensed to nancy chen <amigo4u2009@gmail.com>

41

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

It would be terribly slow to examine every item. In reality, first, a “neighborhood” of most similar

users it computed first, and only items known to those users are considered

for every other user v
 compute a similarity s between u and v
 retain the top users, ranked by similarity, as a “neighborhood” n
for every item i that some user in n has a preference for,
 but that u has no preference for yet
 for every other user v in n that has a preference for i
 compute a similarity s between u and v
 incorporate v's preference for i, weighted by s, into a running average

The primary difference is that we find the similar users first, and see what those most-similar users

are interested in first, and then take those items as our candidates. The rest is the same. This is the

standard user-based recommender algorithm.

4.2.2 Implementing the algorithm with GenericUserBasedRecommender
We have already seen a user-based recommender in action, in the very first example. Let's return to it,

in order to explore the components in use and see how well it performs.

Listing 4.1 Revisiting of a simple user-based Recommender system
DataModel model = new FileDataModel(new File("intro.csv"));
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(2, similarity, model);
Recommender recommender =
 new GenericUserBasedRecommender(model, neighborhood, similarity);

UserSimilarity encapsulates some notion of similarity amongst users. And, UserNeighborhood

encapsulates some notion of a group of most-similar users. These are necessary components of the

standard user-based recommender algorithm.

There isn't only one possible notion of similarity – we already discussed a few real-world ideas of

similarity above. There are also many ways to define a neighborhood of most similar users: the 5 most

similar? 20? Users with a similarity above a certain value? To illustrate these, imagine you’re creating a

guest list for your wedding. You want to invite your closest friends and family to this special occasion,

but you have far more friends and family than your budget will allow. Would you decide who is and isn’t

invited by picking a size first -- say 50 people -- and picking your 50 closest friends and family? Is 50

the right number, or 40 or 100? Or would you invite everyone who you consider “close”? Should you

only invite your “really close” friends? Which one will give the best wedding party? This is analogous to

the decision you make when deciding how to pick a neighborhood of similar users.

Plug in new ideas of similarity and you get quite different results. You can begin to see that there is

not merely one way to produce recommendations – and we're still looking at one facet of one approach

that can be adjusted. As you will see, Mahout is not one recommender engine at all, but an assortment

of components that may be plugged together and customized to create an ideal recommender for a

particular domain. Here we’ve put together the following components:

 Data model implemented via DataModel

Licensed to nancy chen <amigo4u2009@gmail.com>

42

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 User-user similarity metric implemented via UserSimilarity

 User neighborhood definition implemented via UserNeighborhood

 Recommender engine implemented via a Recommender: here,
GenericUserBasedRecommender

 As you will see through the rest of the book, getting good results, and getting them fast, is

inevitably a long process of experimentation and refinement.

4.2.3 Exploring with GroupLens
Let’s return to the GroupLens data set and up the ante. This time we will use 100 times more data. We

promised scale, right? Return to http://grouplens.org and download the 10 million rating data set, which

is currently available at http://www.grouplens.org/node/73. Unpack it locally and locate the

ratings.dat file inside.

For whatever reason, the format of this data is different from the 100,000 rating data set we had

used before. Whereas its ua.base file was ready for use with FileDataModel, this data set’s

ratings.dat file is not. It would be simple to use standard command-line text-processing utilities to

convert it to a comma-separated form, and in general, this is the best approach. Writing custom code to

convert the file format, or a custom DataModel, is tedious and error prone.

Luckily, in this particular case there's an easier solution: Mahout's examples module includes the

custom implementation GroupLensDataModel, which extends FileDataModel to read this file. Make

sure you have included the code under the examples/ directory in your project in your IDE. Then,

swap out FileDataModel for this alternative:

Listing 4.2 Updating to use a custom DataModel for GroupLens
DataModel model = new GroupLensDataModel(new File("ratings.dat"));
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(100, similarity, model);
Recommender recommender =
 new GenericUserBasedRecommender(model, neighborhood, similarity);
LoadEvaluator.runLoad(recommender);

Run this, and the first thing you will likely encounter is an OutOfMemoryError. Ah, a first sighting

of issues of scale. By default, Java will not grow its heap past a certain modest size. We need to

increase the amount of heap space available to Java.

 This is a good first opportunity to discuss what can be done to improve performance by tuning the

JVM. Refer to Appendix A at this point for a more in-depth discussion of JVM tuning.

4.3 Exploring user neighborhoods
Let's next evaluate the recommender accuracy. Yes, we’ve done this before; we’ll present the

boilerplate evaluation code one more time, but, going forward, we figure you’ve got the hang of it and

can construct and run evaluations on your own.

Now, we look at possibilities for configuring and modifying the neighborhood implementation.

Remember, we’re also using 100 times more data as well.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://grouplens.org/�
http://www.grouplens.org/node/73�

43

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Listing 4.3 Running an evaluation on the simple Recommender
DataModel model = new GroupLensDataModel(new File("ratings.dat"));
RecommenderEvaluator evaluator =
 new AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
 @Override
 public Recommender buildRecommender(DataModel model) throws TasteException {
 UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
 UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(100, similarity, model);
 return new GenericUserBasedRecommender(model, neighborhood, similarity);
 }
};
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.95, 0.05);
System.out.println(score);

Note how the final parameter to evaluate() is 0.05. This means only 5% of all the data is used for

evaluation. This is purely for convenience; evaluation is a time-consuming process and using this full

data set, could take hours to complete. For purposes of quickly evaluating changes, it's convenient to

reduce this value. We shouldn’t push it down too far, as using too little data might compromise the

accuracy of the evaluation result. The parameter 0.95 simply says to build a model to evaluate with

95% of the data, and then test with the remaining 5%. After running this, your evaluation result will

vary, but should likely be around 0.89.

4.3.1 Fixed-size neighborhoods
At the moment, the recommendations are derived from a neighborhood of the 100 most similar users

(see use of NearestNUserNeighborhood with neighborhood size 100). We’ve arbitrarily decided that

we will always use the 100 users whose similarity is greatest in order to make recommendations. What

if this were 10? We'd base recommendations on fewer similar users, but would exclude some less-

similar users from consideration.

Figure 4.1 An illustration of defining a neighborhood of most similar users by picking a fixed number of closest
neighbors. Here, distance illustrates similarity: farther means less similar. In this picture, neighborhood around user 1 is
chosen to consist of the three most similar users: 5, 4, and 2.

Try this change -- replace 100 with 10. The result of the evaluation, the average difference between

estimated and actual preference value, is 0.98 or so. Recall that larger evaluation values are worse, so

Licensed to nancy chen <amigo4u2009@gmail.com>

44

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

that’s a move in the wrong direction. The most likely explanation is that 10 users are too few. It’s likely

that the eleventh and twelfth most similar users and so on add value. They are still quite similar, and,

are associated to items that the first 10 most similar users weren't.

We could go the other direction, and try a neighborhood of 500 users; the result drops to 0.75,

which is of course better. We could evaluate many values and figure out the optimal setting for this data

set. For brevity, we won't, but rather continue musing about the recommender. The lesson is that there

is no magic value; some experimentation with real data is necessary to tune your recommender.

4.3.2 Threshold-based neighborhood
What if we don't want to build a neighborhood of the n most similar users, but rather try to pick the

“pretty similar” users and ignore everyone else? We could pick a similarity threshold and take any users

that are at least that similar.

The threshold should be between -1 and 1, since all similarity metrics return similarity values in this

range. At the moment, we use a standard Pearson correlation as the similarity metric. Those familiar

with this correlation would likely agree that a value of 0.7 or above is a “high correlation” and

constitutes a sensible definition of “pretty similar.” So, we now switch to use

ThresholdUserNeighborhood. It's as simple as changing one line to new
ThresholdUserNeighborhood(0.7, similarity, model) where we have created the

UserSimilarity implementation in our evaluation code.

Now the evaluator scores our recommender at 0.84. What if we make the neighborhood more

selective by choosing a threshold of 0.9? The score worsens to 0.92; it’s likely that the same

explanation applies. How about 0.5? The score improves to 0.78. We will use a threshold-based

neighborhood with threshold 0.5 for the examples that follow.

Figure 4.2 An illustration of defining a neighborhood of most-similar users with a similarity threshold.

Again, you would likely want to explore many more values on real data to determine an optimum,

but already we've improved estimation accuracy by about 15% with some simple tinkering.

4.4 Exploring similarity metrics
We continue the survey of user-based recommenders by examining changes to the most important part:

the UserSimilarity implementation. A user-based recommender relies most of all on this

component. Without a reliable and effective notion of which users are similar to others, this approach

falls apart.

Licensed to nancy chen <amigo4u2009@gmail.com>

45

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

4.4.1 Pearson correlation-based similarity
So far, we have used the PearsonCorrelationSimilarity, which is a similarity metric based on

the Pearson correlation. The Pearson correlation is a number between -1 and 1. It measures the

tendency of two series of numbers, paired up one-to-one, to move together. That is to say, it measures

how much a number in one series to be relatively large when the corresponding number in the other

series is high, and vice versa. To be exact, it measures the tendency of the numbers to move together

proportionally, such that there is a roughly linear relationship between the values in one series and the

other. When this tendency is high, the correlation is close to 1. When there appears to be little

relationship at all, the value is near 0. When there appears to be an opposing relationship -- one series’

numbers are high exactly when the other series’ numbers are low -- the value is near -1.

This concept, widely used in statistics, can be applied to users to measure their similarity. We use it

to measure the tendency of two users' preference values to move together – to be relatively high, or

relatively low, on the same items. For an example, look back to the first sample data file we created:

Listing 4.4 Restatement of simple recommender input file
1,101,5.0
1,102,3.0
1,103,2.5

2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0

3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0

4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0

5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

We noted that users 1 and 5 seem similar since their preferences seem to run together. On items

101, 102, and 103, they roughly agree: 101 is the best, 102 somewhat less good, and 103 isn’t

desirable. By the same reasoning users 1 and 2 are not so similar. Note that we can’t really include

items 104 through 106 in our reasoning about user 1, since we don’t know anything about user 1’s

preference for 104 through 106. As far as we’re concerned, the similarity computation can only operate

on items that both users have expressed a preference for. In an upcoming section, we’ll look at what

happens when we infer “missing” preference values like this.

Licensed to nancy chen <amigo4u2009@gmail.com>

46

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

The Pearson correlation captures these notions, as can be seen from the table 4.2. We don’t

reproduce the details of the computation here; refer to other sources for a complete explanation of how

the correlation is computed.

Table 4.2 This table shows the Pearson correlation between user 1 and other users (note that a user’s
correlation with itself is always 1.0) based on the three items that user 1 has in common with the others.

 Item 101 Item 102 Item 103 Correlation with User 1

User 1 5.0 3.0 2.5 1.000

User 2 2.0 2.5 5.0 -0.764

User 3 2.5 - - -

User 4 5.0 - 3.0 1.000

User 5 4.0 3.0 2.0 0.945

4.4.2 Pearson correlation problems
While the results are indeed intuitive, the Pearson correlation has some quirks in the context of

recommender engines. It doesn't take into account the number of items in which two users' preferences

overlap, which is probably a weakness in the context of recommender engines. Two users that have

seen 200 of the same movies, for instance, even if they don't often agree on ratings, are probably more

similar than two users who have only ever seen 2 movies in common. This issue appears in a small way

in the data above; note that users 1 and 5 have both expressed preferences for all three items, and

seem to have similar tastes. Yet, users 1 and 4 have a higher correlation of 1.0, based on only two

overlapping items. This seems a bit counterintuitive.

If two users overlap in only one item, no correlation can be computed, because of how the

computation is defined. This is why no correlation can be computed between users 1 and 3. This could

be an issue for small or sparse data sets, in which users item sets rarely overlap. Or, one could also

view it as a benefit: two users that overlap in only one item are, intuitively, not very similar anyway.

The correlation is also undefined if either series of preference values are all identical -- we noted this

problem before. For example, if user 5 had expressed a preference of 3.0 for all three items above, we

could not compute a similarity between 1 and 5 since the Pearson correlation would be undefined. This

is likewise most probably an issue when users rarely overlap with others in the items they’ve expressed

any preference for.

While the Pearson correlation commonly appears with recommenders in early research papers (see

http://lucene.apache.org/mahout/taste.html), and appears in introductory books on recommenders, it is

not necessarily a good first choice. It’s not necessarily bad, either; it simply bears understanding how it

works.

4.4.3 Employing weighting
PearsonCorrelationSimilarity provides an “extension” to the standard computation, called

weighting, that mitigates one of the issues above. The Pearson correlation does not reflect, directly, the

Licensed to nancy chen <amigo4u2009@gmail.com>

http://lucene.apache.org/mahout/taste.html�

47

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

number of items over which it is computed. For our purposes that would be desirable: when based on

more information, the resulting correlation would be a more reliable result. In order to reflect this, we’d

like to push positive correlation values towards 1.0, and negative values towards -1.0, when the

correlation is based on more items. Alternatively, you could imagine pushing the correlation values

towards some mean preference value when the correlation is based on fewer items; the effect would be

similar, but the implementation somewhat more complex as it would require tracking what the mean

preference value is for pairs of users.

In listing 4.3, passing the value Weighting.WEIGHTED to the constructor of

PearsonCorrelationSimilarity as the second argument does this. It will cause the resulting

correlation to be pushed towards 1.0, or -1.0, depending on how many data points where used to

compute the correlation value. A quick re-run of the evaluation framework reveals that, in this case, this

setting improves the score slightly to 0.77.

4.4.4 Defining similarity by Euclidean distance
Let's try EuclideanDistanceSimilarity -- swap in a different implementation by simply changing

the UserSimilarity implementation used in listing 4.3 to new
EuclideanDistanceSimilarity(model) instead.

This implementation is based on the “distance” between users. This idea makes sense if you think of

users as points in a space of many dimensions (as many dimensions are there are items), whose

coordinates are preference values. This similarity metric computes the Euclidean distance5

Table 4.3 This table shows the Euclidean “distance” between user 1 and other users, and resulting
similarity scores.

 d between

two such user “points”. This value alone does not constitute a valid similarity metric, because larger

values would mean more distant, and therefore less similar, users. We need the value to be smaller

when users are more similar. Therefore, the implementation actually returns 1 / (1+d). You can verify

that when the distance is 0 (users have identical preferences) the result is 1, decreasing to 0 as d

increases. This similarity metric never returns a negative value, but larger values still mean more

similarity.

 Item 101 Item 102 Item 103 Distance Similarity to User 1

User 1 5.0 3.0 2.5 0.000 1.000

User 2 2.0 2.5 5.0 3.937 0.203

User 3 2.5 - - 2.500 0.286

User 4 5.0 - 3.0 0.500 0.667

User 5 4.0 3.0 2.0 1.118 0.472

5 Recall this is the square root of the sum of squares of the differences in coordinates

Licensed to nancy chen <amigo4u2009@gmail.com>

48

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

After changing our last example to use EuclideanDistanceSimilarity, the result is 0.75 – it

happens to be a little better in this case, but barely. Note that we were able compute some notion of

similarity for all pairs of users here, whereas the Pearson correlation couldn’t produce an answer for

users 1 and 3. This is good, on the one hand, though the result is based on one item in common, which

could be construed as undesirable. We note that this implementation also has the same possibly

counterintuitive behavior: users 1 and 4 have a higher similarity than users 1 and 5.

4.4.5 Adapting the cosine measure similarity
The cosine measure similarity is another similarity metric that depends on envisioning user preferences

as like points in space. Hold in mind the example above, of user preferences as points in an n-

dimensional space. Imagine two lines from the origin, or point (0,0,…,0), to each of these two points.

When the two users are similar, they will have similar ratings, and so will be relatively close in space --

at least, they’ll be in roughly the same direction from the origin. The angle formed between these two

lines will be relatively small. In contract, when the two users are dissimilar, their points will be distant,

and likely in different directions from the origin, forming a wide angle.

This angle can be used as the basis for a similarity metric, in the same way we used a distance to

form a similarity metric above. In this case, we take the cosine of the angle as the similarity value. If

you’re rusty on trigonometry, all you need to remember to understand this is that the cosine value is

always between -1 and 1 and that the cosine of a small angle is near 1, and the cosine of a large angle

near 180 degrees is close to -1. This is good, since we want small angles to map to high similarity, near

1, and large angles to map to near -1.

 You may be searching for something like “CosineMeasureSimilarity” in Mahout. You’ve

actually already found it but under an unexpected name: PearsonCorrelationSimilarity. The

cosine measure similarity and Pearson correlation aren’t the same thing, but, if you bother to work out

the math, they actually reduce to the same computation when the two series of input values each have

a mean of 0 (“centered”).

The cosine measure similarity is commonly referenced in research on collaborative filtering. You can

employ this similarity metric too by simply using PearsonCorrelationSimilarity.

4.4.6 Defining similarity by relative rank with the Spearman correlation
The Spearman correlation is an interesting variant on the Pearson correlation, for our purposes. Rather

than compute a correlation based on the original preference values, it computes a correlation based on

the relative rank of preference values. Imagine that, for each user, we find his or her least preferred

item and overwrite its preference value with a “1”. Then we change the next-least-preferred item’s

preference value to “2”, and so on. To illustrate this, imagine if you were rating movies and gave your

least-preferred movie 1 star, the next-least favorite 2 stars, and so on. Then, we compute a Pearson

correlation on the transformed values. This is the Spearman correlation.

This process loses some information. While it preserves the essence of the preference values -- their

ordering -- it removes information about exactly how much more each item was liked than the last. This

may or may not be a good idea; it is somewhere between keeping preference values and forgetting

them entirely, two options we’ve already looked at.

Table 4.4 below shows the resulting Spearman correlations. Its simplifications on this already-simple

data set result in some extreme values: in fact, all correlations are 1 or -1 here, depending on whether

Licensed to nancy chen <amigo4u2009@gmail.com>

49

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

a user’s preference values run with or counter to user 1’s preferences here. As with the Pearson

correlation, no value can be computed between users 1 and 3.

Table 4.4 This table shows the preference values transformed into rank, and the resulting Spearman
correlation between user 1 and each of the other users.

 Item 101 Item 102 Item 103 Correlation to User 1

User 1 3.0 2.0 1.0 1.0

User 2 1.0 2.0 3.0 -1.0

User 3 1.0 - - -

User 4 2.0 - 1.0 1.0

User 5 3.0 2.0 1.0 1.0

SpearmanCorrelationSimilarity implements this idea. You could try using this as the

UserSimilarity in the evaluator code we’ve been using so far. Run it, and take a long coffee break.

Turn in for the night. It won’t finish anytime soon. This implementation is far slower because it must do

some non-trivial work to compute and store these ranks, and is orders of magnitude slower. The

Spearman correlation-based similarity metric is expensive to compute, and is therefore possibly of

academic interest more than practical use. For some small data sets, it may be desirable.

It’s a fine time to introduce one of many caching wrapper implementations available in Mahout.

CachingUserSimilarity is a UserSimilarity implementation that wraps another

UserSimilarity implementation and caches its results. That is, it delegates computation to another,

given implementation, and remembers those results internally. Later when asked for a user-user

similarity value that was previously computed, it can answer immediately rather than delegate to the

given implementation again to compute. In this way, one can add on caching to any similarity

implementation. When the cost of performing a computation is relatively high, as here, it can be

worthwhile to employ. The cost, of course, is memory consumed by the cache. So, instead, try using:

Listing 4.5 Employing caching with a UserSimilarity implementation

UserSimilarity similarity = new CachingUserSimilarity(
 new SpearmanCorrelationSimilarity(model), model);

It’s also advisable to decrease the amount of test data from 5% to 1% by increasing the

trainingPercentage argument to evaluate() from 0.95 to 0.99. It would also be wise to decrease

the evaluation percentage from 5% to 1% by changing the last parameter from 0.05 to 0.01. This will

allow the evaluation to finish in more like tens of minutes. The result should be near 0.80. Again, broad

conclusions are difficult to draw: on this particular data set, it was not quite as effective as other

similarity metrics.

Licensed to nancy chen <amigo4u2009@gmail.com>

50

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

4.4.7 Ignoring preference values in similarity with the Tanimoto coefficient
Interestingly, there are also UserSimilarity implementations that ignore preference values

entirely. They don't care whether a user expresses a high or low preference for an item – only that the

user expresses a preference at all. How can this be a good idea? If preference values are good data,

then ignoring them seems like a bad idea that hurts performance. But we saw that it didn't necessarily

hurt at all. This should serve as an additional warning that more data is not necessarily better.

 TanimotoCoefficientSimilarity is one such implementation, based on (surprise) the

Tanimoto coefficient. This value is also known as the Jaccard coefficient. It is the number of items that

both of two users express some preference for, divided by the number of items that either user

expresses some preference for, as illustrated in figure 4.4.

Figure 4.3 The Tanimoto coefficient is the ratio of the size of the intersection, or overlap in two users’ preferred items
(dark area), to the union of the users’ preferred items (dark and light areas together).

In other words, it is the ratio of the size of the intersection to the size of the union of their preferred

items. It has the required properties: when two users’ items completely overlap, the result is 1.0. When

they have nothing in common, it’s 0.0. The value is never negative, but that’s OK. If we wished, we

could expand the results into the range -1 to 1 with some simple math: similarity = 2 • similarity - 1. It

won’t matter to the framework.

Table 4.5 This table shows the similarity values between user 1 and other users, computed using the
Tanimoto coefficient. Note that preference values themselves are omitted, as they are not used in the
computation.

 Item
101

Item
102

Item
103

Item
104

Item
105

Item
106

Item
107

Similarity to
User 1

User
1

X X X 1.0

User
2

X X X X 0.75

User X X X X 0.17

Licensed to nancy chen <amigo4u2009@gmail.com>

51

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

3

User
4

X X X X 0.4

User
5

X X X X X X 0.5

Note that this similarity metric does not depend only on the items that both have some preference

for, but that either has some preference for. Hence, all seven items appear in our calculation, unlike

before.

You’re likely to use this similarity metric if, and only if, your underlying data contains only “boolean”

preferences, and you have no preference values to begin with. If you do have preference values,

presumably it is because you believe they are more signal than noise. You would usually do better with

a metric that uses this information. In our GroupLens data set, using this metric gives a slightly worse

score of 0.82.

4.4.8 Computing smarter similarity with a log-likelihood test
Log-likelihood-based similarity is similar to the Tanimoto coefficient-based similarity, though more

difficult to understand intuitively. It is also a metric that does not take account of individual preference

values. The math involved in computing this similarity metric is beyond the scope of this book to

explain. It is also based on the number of items in common between two users, but, its value is more an

expression of how unlikely it is for two users to have so much overlap, given the total number of items

out there and the number of items each user has a preference for.

To illustrate, consider two movie fans who have each seen and rated several moves, but, have only

both seen “Star Wars” and “Casablanca”. Are they similar? If they have each seen hundreds of movies,

it wouldn’t mean much. Many people have seen these movies, and, if these two have seen many movies

but only managed to overlap in these two, they’re probably not similar. On the other hand, if each user

has seen just a few movies, and these two were on both users’ lists, then it would seem to imply they’re

similar people, when it comes to movies; the overlap would be significant.

The Tanimoto coefficient already encapsulates some of this thinking, since it looks at the ratio of the

size of the intersection of their interests to the union. The log-likelihood is computing something slightly

different. It is trying to assess how unlikely it is that the overlap between the two users is just due to

chance. That is to say, two dissimilar users will no doubt happen to rate a couple movies in common;

two similar users will show an overlap that looks quite unlikely to be mere chance. With some statistical

tests, this similarity metric attempts to find just how strongly unlikely it is that two users have no

resemblance in their tastes; the more unlikely, the more similar we figure the two are. This requires

looking at a little more than mere intersection and union of their preferred items.

Table 4.6 This table shows the similarity values between user 1 and other users, computed using the log-
likelihood similarity metric.

 Item
101

Item
102

Item
103

Item
104

Item
105

Item
106

Item
107

Similarity to
User 1

Licensed to nancy chen <amigo4u2009@gmail.com>

52

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

User
1

X X X 0.90

User
2

X X X X 0.84

User
3

X X X X 0.55

User
4

X X X X 0.16

User
5

X X X X X X 0.55

Using a log-likelihood-based similarity metric is as easy as inserting new
LogLikelihoodSimilarity in listing 4.3, as before.

While it’s hard to generalize, log-likelihood-based similarity will probably outperform Tanimoto

coefficient-based similarity. It is, in a sense, a more intelligent metric. Re-running the evaluation shows

that, at least for our data set and recommender, it improves performance over

TanimotoCoefficientSimilarity, to 0.73.

4.4.8 Inferring preferences
We noted above that sometimes too little data is a problem. In a few cases, for example, the Pearson

correlation was unable to compute any similarity value at all since some pairs of users overlap in only

one item. The Pearson correlation can’t take account of preference values for items which only one user

has expressed a preference either.

What if we “filled in the blanks” with some default value? For example, we could pretend that each

user has rated every item by inferring preferences for items for which the user hasn’t explicitly

expressed a preference. This sort of strategy is enabled via the PreferenceInferrer interface, which

at the moment has one implementation, AveragingPreferenceInferrer. This implementation

computes the average preference value for each user and fills in this average as the preference value

for any item not already associated to the user. It can be enabled on a UserSimilarity

implementation with a call to setPreferenceInferrer().

While this strategy is available, it is in practice not usually helpful. It is provided primarily because it

is mentioned in early research papers on recommender engines. In theory, making up information

purely based on existing information isn’t adding anything. It certainly does slow down computations

drastically. It is available for experimentation, but will likely not be useful when applied to real data

sets.

4.5 Item-based recommendation
We’ve looked at user-based recommenders -- not one recommender, but tools to build a nearly limitless

number of variations on the basic user-based approach, by plugging in different and differently

configured components into the implementation.

Licensed to nancy chen <amigo4u2009@gmail.com>

53

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Yet there are other approaches to recommendation, and next we will look at item-based

recommenders. This section will be shorter, since several of the components we've seen already (data

models, similarity implementations) still apply to item-based recommenders.

Item-based recommendation is derived from how similar items are to items, instead of users to

users. To illustrate, return to the pair we left in the music store, doing their best to pick an album that a

teenage boy would like. Imagine yet another line of reasoning they could have adopted:

ADULT: I am looking for a CD for a teenage boy.

EMPLOYEE: OK, what does he like?

ADULT: Oh, you know, he likes what all the young kids like these days.

EMPLOYEE: What kind of music or bands?

ADULT: He wears a Bowling In Hades t-shirt all the time and seems to have all of their

albums. Anything else you’d recommend?

EMPLOYEE: Well, about everyone I know that likes Bowling In Hades seems to like the

new Rock Mobster album.

This sounds reasonable. Is this different from previous examples? Yes. The record store employee is

recommending an item that is similar to something we already know the boy likes. This is not the same

as before, where the question was, “who is similar to the boy, and what do they like?” Here the question

is, “what is similar to what the boy likes?”

Figure 4.4 A basic illustration of the difference between user-based and item-based recommendation: user-based
recommendation (large dashes) finds similar users, and sees what they like. Item-based recommendation (short
dashes) sees what the user likes, then finds similar items.

4.5.1 The algorithm
The algorithm will feel familiar, having seen user-based recommenders already:

Licensed to nancy chen <amigo4u2009@gmail.com>

54

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

for every item i that u has no preference for yet
 for every item j that u has a preference for
 compute a similarity s between i and j
 add u's preference for j, weighted by s, to a running average
return the top items, ranked by weighted average

The third line shows how it is based on item-item similarities, not user-user similarities as before.

The algorithms are similar, but not entirely symmetric. They do have notably different properties. For

instance, the running time of an item-based recommender scales up as the number of items increases,

whereas a user-based recommender’s running time goes up as the number of users increases.

This suggests one reason that you might choose an item-based recommender: if the number of

users is relatively low compared to the number of items, the performance advantage could be

significant.

Also, items are typically less subject to change than users. When items are things like DVDs, we

expect that over time, as we acquire more data, that our estimates of the similarities between items

converge. We have no reason to expect them to change radically or frequently. Some of the same may

be said of users, but, users can change over time and new knowledge of users is likely to come in bursts

of new information that must be digested quickly. To connect this to the last example, it’s likely that

Bowling in Hades albums and Rock Mobster albums will remain as similar to each other next year as

today. However, it’s a lot less likely that the same fans mentioned above will have the same tastes next

year, and so, their similarities will change more.

We observe this in order to argue that if item-item similarities are more fixed, then they are better

candidates for precomputation. Precomputing similarities takes work, but of course speeds up

recommendations at run time. This could be desirable in contexts where delivering recommendations

quickly at run time is essential -- think about a news site which must potentially deliver

recommendations immediately with each news article view.

4.5.2 Exploring the item-based recommender
Let’s insert a simple item-based recommender into our familiar evaluation framework, using the

following code. Here we’re deploying GenericItemBasedRecommender rather than

GenericUserBasedRecommender, and it requires a different and simpler set of dependencies.

Listing 4.6 The core of a basic item-based recommender
@Override
public Recommender buildRecommender(DataModel model)
 throws TasteException {
 ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);
 return new GenericItemBasedRecommender(model, similarity);
}

PearsonCorrelationSimilarity still works here, because it also implements the

ItemSimilarity interface, which is entirely analogous to the UserSimilarity interface that we’ve

already seen. It implements the same notion of similarity, based on the Pearson correlation, but

between items instead of users. That is, it compares series of preferences expressed by many users, for

one item, rather than by one user for many items.

Licensed to nancy chen <amigo4u2009@gmail.com>

55

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

GenericItemBasedRecommender is simpler. It only needs a DataModel and ItemSimilarity -

- no “ItemNeighborhood”. You might wonder at the apparent asymmetry. Recall that the item-based

recommendation process already begins with a limited number of starting points: the items that the

user in question already expresses a preference for. This is analogous to the neighborhood of similar

users that the user-based approach first identifies. It doesn’t make sense in the second half of the

algorithm to compute neighborhoods around each of the user’s preferred items.

You are invited to experiment with different similarity metrics, as above. Not all of the

implementations of UserSimilarity that we have seen so far also implement ItemSimilarity. By

now, you’ll already know how to evaluate the accuracy of this item-based recommender when using

various similarity metrics on our now-familiar GroupLens data set. Results are reproduced below for

convenience.

Table 4.7 Evaluation result under various ItemSimilarity metrics

Implementation Similarity

PearsonCorrelationSimilarity 0.75

PearsonCorrelationSimilarity + weighting 0.75

EuclideanDistanceSimilarity 0.76

EuclideanDistanceSimilarity + weighting 0.78

TanimotoCoefficientSimilarity 0.77

LogLikelihoodSimilarity 0.77

One thing you may notice is this recommender setup runs significantly faster. This is not surprising,

given that the data set has about 70,000 users and 10,000 items. We noted that item-based

recommenders would generally be faster when there are fewer items than users. You may, as a result,

wish to increase the percentage of data used in the evaluation to 20% or so (pass 0.2 as the final

argument to evaluate()). This should result in a more reliable evaluation. Note there is little apparent

difference among these implementations on this data set.

4.6 Slope-one recommender
Did you like the movie “Carlito's Way”? Most people who liked this movie, it seems, also liked

another film starring Al Pacino – like “Scarface”. But people tend to like Scarface a bit more. We'd

imagine most people that think of Carlito's Way as a four-star movie would give Scarface five stars. So

if you told me you thought Carlito's Way was a three-star movie, I might guess you'd give Scarface four

stars – one more than the other film.

If you agree with this sort of reasoning, you will like the slope-one recommender

(http://en.wikipedia.org/wiki/Slope_One). It estimates preferences for new items based on average

difference in preference value (“diffs”) between a new item and the other items the user prefers.

For example, let's say that we know that, on average, people rate Scarface higher by 1.0 than

Carlito's Way. Let's also say we find everyone rates Scarface the same as The Godfather, on average.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://en.wikipedia.org/wiki/Slope_One�

56

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

And now, we are presented with a user who rates Carlito's Way 2.0, and The Godfather 4.0. What do we

estimate his preference for Scarface would be?

Based on Carlito's Way, we'd guess 2.0 + 1.0 = 3.0. Based on The Godfather, we'd guess 4.0 + 0.0

= 4.0. Taking a simple average of the two, we'd guess 3.5. This is the essence of the slope-one

recommender approach.

4.6.1 The algorithm
Its name comes from the fact that the recommender algorithm starts with the assumption that there is

some linear relationship between the preference values for one item and another, that we can in general

estimate the preferences for some item Y based on the preferences for item X, via some linear function

like Y = mX + b. Then, the slope-one recommender makes the additional simplifying assumption that

m=1: “slope one”. We're left attempting to find b = Y-X, the (average) difference in preference value,

for every pair of items.

So, the algorithm consists of a significant preprocessing phase, in which all item-item preference

value differences are computed:

for every item i
 for every other item j
 for every user u expressing preference for both i and j
 add the difference in u’s preference for i and j to an average

And then, the recommendation algorithm becomes:

for every item i the user u expresses no preference for
 for every item j that user u expresses a preference for
 find the average preference difference between j and i
 add this diff to u’s preference value for j
 add this to a running average
return the top items, ranked by these averages

The average diffs over the small sample recommender input we have been using throughout the

book are showing in table 4.8.

Table 4.8 Average difference in preference value between all pairs of items. Cells along the diagonal are
0.0. Cells in the bottom left are simply the negative of their counterparts across the diagonal. Hence these
are not represented explicitly. Some diffs don’t exist, such as 102-107, since no user expressed a
preference for both 102 and 107.

 Item 101 Item 102 Item 103 Item 104 Item 105 Item 106 Item 107

Item 101 -0.833 0.875 0.25 0.75 -0.5 2.5

Item 102 0.333 0.25 0.5 1.0 -

Item 103 0.167 1.5 1.5 -

Item 104 0.0 -0.25 1.0

Item 105 0.5 0.5

Licensed to nancy chen <amigo4u2009@gmail.com>

57

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Item 106 -

Item 107

Slope-one is attractive because the on-line portion of the algorithm is fast. Like an item-based

recommender, its performance does not depend upon the number of users in the data model. It

depends only upon the average preference difference between every pair of items, which can be pre-

computed. Further, its underlying data structure can be efficiently updated: when a preference changes,

it’s simple to update relevant diff values. In contexts where preferences may change quickly, this is an

asset.

Note that the memory requirements necessary to store all of these item-item differences in

preference value grow as the square of the number of items. Twice as many items means four times the

memory!

4.6.2 Slope-one in practice
We can easily try the slope-one recommender by simply employing the code below. Note that the slope-

one recommender takes no similarity metric as a necessary argument: new
SlopeOneRecommender(model).

After running a standard evaluation using, again, the GroupLens 10M ratings data set, you’ll get a

result near 0.65. That’s the best yet. Indeed, the simple slope-one approach works well in many cases.

This algorithm does not make use of a similarity metric, unlike the other approaches we have looked at.

It has relatively few “knobs” to twiddle.

Like the Pearson correlation, the simplest form of the slope-one algorithm has a vulnerability: item-

item diffs are given equal weighting regardless of how “reliable” they are, how much data they are

based upon. Let’s say only one user in the history of movie watching has rated both Carlito’s Way and

The Notebook. It’s possible; they’re quite different films. We could compute a diff for these two films.

Would it be as useful as the diff we compute between Carlito’s Way and The Godfather, averaged over

thousands of users? It sounds unlikely. The latter diff is probably more reliable since it is an average

over a higher count of users.

Again, we can employ some form of weighting to improve recommendations by taking some account

of this. SlopeOneRecommender offers two types of weighting: weighting based on count, and on

standard deviation. Recall that slope-one estimates preference values by adding diffs to all of the user’s

current preference values, and then averaging all of those results together to form an estimate. Count

weighting will weight more heavily those elements based on diffs that are based on more data, more

users who have expressed a preference for both items in question. In particular, the average becomes a

weighted average, where the diff “count” is the weight -- the number of users on which the diff is

based.

Similarly, standard deviation weighting will weight according to the standard deviation of difference

in preference value. Lower standard deviation means higher weighting. If the difference in preference

value between two films is very consistent across many users, it seems more reliable and should be

given more weight. If it varies considerably from user to user, then it should be deemphasized.

These variants turn out to be enough of a good idea that they are enabled by default. You already

used this strategy when you ran the evaluation above. We could disable them to see the effect:

Licensed to nancy chen <amigo4u2009@gmail.com>

58

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Listing 4.7 Selecting no weighting with a SlopeOneRecommender
DiffStorage diffStorage = new MemoryDiffStorage(
 model, Weighting.UNWEIGHTED, false, Long.MAX_VALUE));
return new SlopeOneRecommender(
 model,
 Weighting.UNWEIGHTED,
 Weighting.UNWEIGHTED,
 diffStorage);

The result is 0.67 -- only slightly worse on this data set.

4.6.3 DiffStorage and memory considerations
Slope-one does have its price, as we noted: memory consumption. In fact, if you tweak the evaluation

to use even 10% of all data (about 100,000 ratings), even a 1 gigabyte heap won’t be enough. The diffs

are used so frequently, and it’s so relatively expensive to compute them, that they do need to be

computed and stored ahead of time. But, keeping them all in memory can get expensive.

Storage of diffs is encapsulated separately in implementations of DiffStorage. We’ve been using,

by default, MemoryDiffStorage so far. Not surprisingly, this implementation keeps diffs in memory. It

offers one constructor parameter that can trade off some accuracy for slightly less memory

consumption: compactAverages. This will cause the implementation to use smaller primitive data

types to store count, average and standard deviation.

It’s worth a try if pressed for memory, but, by that point you will want to look to storing the diffs

externally, such as in a database. Fortunately, implementations like MySQLJDBCDiffStorage exist for

this purpose. It must be used in conjunction with a JDBC-backed DataModel implementation like

MySQLJDBCDataModel, as seen in listing 4.8:

Listing 4.8 Creating a JDBC-backed DiffStorage
AbstractJDBCDataModel model = new MySQLJDBCDataModel();
DiffStorage diffStorage = new MySQLJDBCDiffStorage(model);
Recommender recommender = new SlopeOneRecommender(
 model, Weighting.WEIGHTED, Weighting.WEIGHTED, diffStorage);

As with MySQLJDBCDataModel, the table name and column names used by

MySQLJDBCDiffStorage can be customized via constructor parameters.

4.6.4 Distributing the precomputation
Precomputing the item-item diffs is significant work. While it is more likely that the size of your data will

cause problems with memory requirements before the time required to compute these diffs becomes

problematic, you might be wondering if there are ways to distribute this computation to complete faster.

Diffs can be updated easily at runtime in response to new information, so, a relatively infrequent offline

precomputation process is feasible in this model.

Distributing the diff computation via Hadoop is supported. We will wait until a later chapter, where

we introduce all of the Hadoop-related recommender support in Mahout, to explore this process.

Licensed to nancy chen <amigo4u2009@gmail.com>

59

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

4.7 New and experimental recommenders
Mahout also contains implementations of other approaches to recommendation. The three

implementations presented briefly below are newer: the implementation may still be evolving, or, the

technique may be more recent and experimental. All are worthy ideas, which may yet be useful for use

or modification. We won’t spend much time here, since they are less central to Mahout’s current

recommender offerings, but still deserve mention.

4.7.1 Singular value decomposition-based recommenders
Among the most intriguing of these implementations is SVDRecommender, based on the singular value

decomposition, or SVD. This is an important technique in linear algebra that pops up in machine-

learning techniques. Fully understanding it requires some advanced matrix math and understanding of

matrix factorization, but this is not necessary to appreciate the SVD’s application to recommenders. It is

beyond the scope of this book, since there are nearly entire books on the linear algebra behind the SVD,

and the SVD algorithm itself.

To attempt to explain the intuition beyond what the SVD does for recommenders, let’s say you ask a

friend what sort of music she likes, and she lists the following artists:

 Brahms

 Chopin

 Miles Davis

 Tchaikovsky

 Louis Armstrong

 Schumann

 John Coltrane

 Charlie Parker

She might as well have summarized that she likes “classical” and “jazz” music. That communicates

less precise information, but not a great deal less. From either statement, you could (probably correctly)

infer that she would appreciate Beethoven more than the classic rock band Deep Purple.

Of course, recommender engines operate in a world of many specific data points, not generalities.

The input is user preferences for a lot of particular items -- more like the list above rather than our

summary. It would be nice to operate on a smaller set of data, all else equal, for reasons of

performance. If, for example, iTunes could base its Genius recommendations based not on billions of

individual song ratings, but instead millions of ratings of genres, obviously it would be faster -- and, as

a basis for recommending music, might not be much worse.

 Here, the SVD is the magic that can do the equivalent of the summarization above. It boils down

the world of user preferences for individual items to a world of user preferences for more general and

less numerous “features” (like genre, above). This is, potentially, a much smaller set of data.

While this process loses some information, it can sometimes improve recommendation results. The

process “smooths” the input in useful ways. For example, imagine two car enthusiasts. One loves

Corvettes, and the other loves Camaros. We’d like to recommend cars to them. These enthusiasts have

similar tastes: both love a Chevrolet sports car. However, in a typical data model for this problem, these

Licensed to nancy chen <amigo4u2009@gmail.com>

60

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

two cars would be different items. Without any overlap in their preferences, these two users would be

deemed unrelated. However, an SVD-based recommender would perhaps find the similarity. The SVD

output may contain features that correspond to concepts like “Chevrolet” or “sports car”, to which both

users would be associated. And from the overlap in features, a similarity could be computed.

Using the SVDRecommender is as simple as: new SVDRecommender(model, 10, 10). The first

numeric argument is the number of features that the SVD should target. There’s no right answer for

this; it would be equivalent to the number of genres we might condense someone’s musical taste into,

in the previous example. The second argument is the number of “training steps” to run. Think of this as

controlling the amount of time it should spend producing this summary; larger values mean longer

training.

This approach can give good results (0.66 on our GroupLens data set). At the moment, the major

issue with the implementation is that it computes the SVD in memory. This requires the entire data set

to fit in memory, and it’s precisely when this isn’t the case that this technique is appealing, since it can

“shrink” the input without compromising output quality significantly. In the future, this algorithm will be

reimplemented in terms of Hadoop, wherein the necessarily massive SVD computation can be

distributed across multiple machines. It is not yet available at this stage of Mahout’s evolution.

4.7.2 Linear interpolation item-based recommendation
This is a somewhat different take on item-based recommendation, implemented as

KnnItemBasedRecommender. “Knn” is short for “k nearest neighbors”, which is an idea we already

saw in the context of NearestNUserNeighborhood. This was a UserNeighborhood implementation

that selected a fixed number of most similar users as a neighborhood of similar users. The algorithm

does use the concept of a user neighborhood, but in a different way.

 This recommender algorithm still estimates preference values by means of a weighted average of

the items the user already has a preference for, but, the weights are not the results of some similarity

metric. Instead, the algorithm calculates the optimal set of weights to use between all pairs of items, by

means of some linear algebra -- here’s where the linear interpolation comes in. Yes, it is possible to just

optimize the weights with some mathematical wizardry.

In reality, it would be very expensive to compute this across all pairs of items, so instead, it first

calculates a neighborhood of items most similar to the target item, the one for which a preference is

being estimated. It chooses the n nearest neighbors, in much the same way that

NearestNUserNeighborhood did. One can try this recommender as seen in listing 4.9:

Listing 4.9 Deploying KnnItemBasedRecommender
ItemSimilarity similarity = new LogLikelihoodSimilarity(model);
Optimizer optimizer = new NonNegativeQuadraticOptimizer();
return new KnnItemBasedRecommender(model, similarity, optimizer, 10);

This will cause the recommender to use a log-likelihood similarity metric to calculate nearest-10

neighborhoods of items. And, it will use a quadratic programming-based strategy to calculate the linear.

The details of this are outside the scope of the book.

The implementation is quite functional, but in its current form, is also slow on moderately sized data

sets. It should be viewed as viable for small data sets, or for study and extension. On the GroupLens

data set, it yields an evaluation result of 0.87.

Licensed to nancy chen <amigo4u2009@gmail.com>

61

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

4.7.3 Cluster-based recommendation
This approach is best thought of as a variant on user-based recommendation. Here, instead of

recommending items to users, we recommend items to clusters of similar users. This entails a

preprocessing phase, in which all users are partitioned into clusters. Recommendations are then

produced for each cluster, such that the recommended items are most interesting to the largest number

of users.

The upside of this approach is that recommendation is fast at runtime -- since most everything is

precomputed. One could argue that the recommendations are less personal this way, since

recommendations are computed for a group rather than an individual. It may be more effective at

producing recommendations for new users, with little preference data available. As long as the user can

be attached to a reasonably relevant cluster, the recommendations ought to be as good as they will be

when more is known about the user.

The name comes from the fact that the algorithm repeatedly joins most-similar clusters into larger

clusters, and this implicitly organizes users into a sort of hierarchy, or tree.

Figure 4.5 An illustration of clustering. Users 1 and 5 are clustered together first, as are 2 and 3, as they are closest. 4
is then clustered with the 1-5 cluster to create a larger cluster, one step up in the “tree”.

Unfortunately, the clustering takes a long time, which you will see if you attempt to run the code in

the following listing, which employs a TreeClusteringRecommender to implement this idea.

Listing 4.10 Creating a cluster-based recommender
UserSimilarity similarity = new LogLikelihoodSimilarity(model);
ClusterSimilarity clusterSimilarity =
 new FarthestNeighborClusterSimilarity(similarity);
return new TreeClusteringRecommender(model, clusterSimilarity, 10);

Licensed to nancy chen <amigo4u2009@gmail.com>

62

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Similarity between users is, as usual, defined by a UserSimilarity implementation. Similarity

between two clusters of users is defined by a ClusterSimilarity implementation. Currently, two

implementations are available: one which defines cluster similarity as the similarity between the two

most similar user pair, one chosen from each cluster, and another which defines it as the similarity

between the two least similar users.

Both are reasonable; in both cases the risk is that one outlier on the edge of a cluster distorts the

notion of cluster similarity. Two clusters whose members are on average “distant” but happen to be

close at one edge would be considered quite close by the most-similar-user rule, which is implemented

by NearestNeighborClusterSimilarity. The least-similar-user rule, implemented above as the

FarthestNeighborClusterSimilarity above, likewise may consider two fairly close clusters to be

distant from one another, if each contains an outlier far away from the opposite cluster.

A third approach, to define cluster similarity as the “distance” between the center, or mean, of each

cluster, is also possible, though not yet implemented in this part of Mahout.

4.8 Comparing to content-based recommenders
As mentioned in an earlier chapter, “content-based” recommendation is a broad and often-mentioned

approach to recommendation, which takes into account the content or attributes of items. For this

reason, it is similar to yet distinct from collaborative filtering approaches, which are based on user

associations to items only, and treat items as black boxes without attributes. While Mahout largely does

not implement content-based approaches, it does offer some opportunities to make use of item

attributes in recommendation computations.

4.8.1 Finding content-based recommending in collaborative filtering
For example, consider an online bookseller, who stocks multiple editions of some books. This seller

might recommend books to its customers. Its items are books, of course, and it might naturally define a

book according to its ISBN number (unique product identifier). However, for a popular public-domain

book like Jane Eyre, there may be many printings by different publishers of the same text, under

different ISBN numbers. It seems more natural to recommend books based on its text, rather than its

particular edition -- do you care more about reading “Jane Eyre” or “Jane Eyre as printed by ACME

Publications in 1993 in paperback”? Rather than treat various publications of Jane Eyre as distinct items,

it might be more useful to think of the book itself, the text, as the item, and recommend all editions of

this book equally. This would be, in a sense, content-based recommendation. By treating the underlying

text of a book product, which is its dominant attribute, as the “item” in a collaborative filtering sense,

and then applying collaborative filtering techniques with Mahout, they would be engaging in a form of

content-based recommendations.

Or, recall that item-based recommenders require some notion of similarity between two given items.

This similarity is encapsulated by an ItemSimilarity implementation. So far we’ve seen

implementations that derive similarity from user preferences only -- this is classic collaborative filtering.

However, there’s no reason the implementation could not be based on item attributes. For example, a

movie recommender might define an item (movie) similarity as a function of movie attributes like genre,

director, actors and actresses, and year of release. Using such an implementation within a traditional

item-based recommender would also be an example of content-based recommendation.

Licensed to nancy chen <amigo4u2009@gmail.com>

63

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

4.8.2 Looking deeper into content-based recommendation
Taking this a step further, imagine content-based recommendation as a generalization of

collaborative filtering. In collaborative filtering, computations are based on preferences, which are user-

item associations. But what drives these user-item associations? It’s likely that users have implicit

preferences for certain item attributes, which come out in their preferences for certain items and not

others. For example, if your friend told you she likes the albums Led Zeppelin I, Led Zeppelin II and Led

Zeppelin III, you might well guess she is actually expressing a preference for an attribute of these

items: the band Led Zeppelin. By discovering these associations, and discovering attributes of items, it’s

possible to construct recommender engines based on these more nuanced understandings of user-item

associations.

These techniques come to resemble search and document retrieval techniques: asking what items a

user might like based on user-attribute associations and item attributes resembles retrieving search

results based on query terms and occurrence of terms in documents. While Mahout’s recommender

support does not yet embrace these techniques, it is a natural direction for future versions to address.

4.9 Comparing to model-based recommenders
Another future direction for Mahout is model-based recommendation. This family of techniques attempts

to build some model of user preferences, based on existing preferences, and then infer new preferences.

These techniques generally fall into the broader category of collaborative filtering, as they typically

derive from user preferences only.

 The “model” might be a probabilistic picture of users’ preferences, in the form of a Bayesian

network for example. The algorithm then attempts to judge the probability of liking an item given its

knowledge of all user preferences, and ranks recommendations accordingly.

Association rule learning can be applied in a similar sense to recommendations. By learning “rules”

such as “when a user prefers item X and item Y, he or she will prefer item Z” from the data, and judging

confidence in the reliability of such rules, a recommender can put together the most likely set of new,

preferred items.

Cluster-based recommenders might be considered a type of model-based recommender. The clusters

represent a model of how users group together and therefore how their preferences might run the same

way. In this limited sense, Mahout supports model-based recommenders. However, this is an area that

is still largely under construction in Mahout as of this writing.

4.10 Summary
In this chapter, we thoroughly explored the core recommender algorithms offered by Mahout. We

started by explaining the general user-based recommender algorithm in terms of real-world reasoning.

From there, we looked at how this algorithm is realized in Mahout, as

GenericUserBasedRecommender. Many pieces of this generic approach can be customized, such as

the definition of user similarity and user neighborhood.

We looked at the “classic” user similarity metric, based on the Pearson correlation, noted some

possible issues with this approach, and responses such as weighting. We looked at similarity metrics

based on the Euclidean distance, Spearman correlation, Tanimoto coefficient and a log-likelihood ratio.

Licensed to nancy chen <amigo4u2009@gmail.com>

64

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Then, we looked at the other canonical recommendation technique, item-based recommendation, as

implemented by GenericItemBasedRecommender. It is conceptually quite similar and reuses some

concepts already covered in the context of user-based recommender, such as the Pearson correlation.

Next, we examined a slope-one recommender, a unique and relatively simple approach to

recommendation based on average differences in preference values between items. It requires

significant precomputation and storage for these diffs, and so we explored how to store these both in

memory and in a database.

Last, we looked briefly at a few newer, more experimental implementations currently in the

framework. These include implementations based on the singular value decomposition, linear

interpolation, and clustering. These may be useful for small data sets, or academic interest, as they are

still a work in progress.

The key parameters and features for each implementation are summarized in table 4.9 below.

Table 4.9 Summary of available recommender implementations, their key input parameters, and key
features to consider when choosing an implementation.

Implementation Key Parameters Key Features

GenericUserBasedRecommender User similarity metric

Neighborhood definition and size

“Conventional” implementation

Fast when number of users is
relatively smaller

GenericItemBasedRecommender Item similarity metric Fast when number of items is
relatively smaller

Useful when an external notion
of item similarity is available

SlopeOneRecommender Diff storage strategy Recommendations and updates
fast at runtime

Requires large precomputation

Suitable when number of items
is relatively small

SVDRecommender Number of features Good results

Requires large precomputation

KnnItemBasedRecommender Number of means (“k”)

Item similarity metric

Neighborhood size

Good when number of items is
relatively smaller

TreeClusteringRecommender Number of clusters

Cluster similarity definition

User similarity metric

Recommendations are fast at
runtime

Requires large precomputation

Licensed to nancy chen <amigo4u2009@gmail.com>

65

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Good when number of users is
relatively smaller

We are done introducing Mahout’s recommender engine support. Now we’re ready to examine even

larger and more realistic data sets, from the practitioner’s perspective. You might wonder why we’ve

made little mention of Hadoop yet. Hadoop is a powerful tool, and necessary when dealing with massive

data sets, where one must make use of many machines. This has drawbacks: such computations are

massive, resource-intensive, and complete in hours, not milliseconds. We will reach Hadoop in the last

chapter in this section. First, in the next chapter, we will explore productionizing a recommender engine

based on Mahout that fits onto one machine, one that can respond to requests for recommendations in

a fraction of a second and incorporate updates immediately.

Licensed to nancy chen <amigo4u2009@gmail.com>

66

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

5
Taking Recommenders

to Production

This chapter covers

 Analyzing data from a real dating site

 Designing and refining a recommender engine solution

 Deploying a web-based recommender service in production

So far, we have toured the recommender algorithms and variants that Mahout provides. We’ve seen

how to evaluate the accuracy and performance of a recommender. Now, we will apply all of this to a real

data set, taken from a dating site, to create an effective recommender engine from scratch based on

data. Then we’ll take the recommender the final step, to a deployable production-ready web service.

There is no one standard approach to building a recommender for given data and a given problem

domain. The data must at least represent associations between users and items -- where “users” and

“items” might be many things. Adapting the input to recommender algorithms is usually quite a

problem-specific process. Discovering the best recommender engine to apply to the input data is

likewise specific to each context. It inevitably involves hands-on exploration, experimentation, and

evaluation on real problem data.

This chapter will present one end-to-end example that suggests the process you might take to

develop a recommender system for your data set. We will try an approach, collect data, try to

understand the results, and repeat many times. Many approaches won’t get us anywhere, but that’s

good information as well. This “brute force” approach is appropriate, since it’s relatively painless to

evaluate an approach, and because here, as in other problem domains, it’s not at all clear what the right

approach is from just looking at the data.

5.1 Dating data from libimseti.cz
We will use a new data set, derived from the Czech dating site Líbímseti (http://libimseti.cz/). Users of

this site are able to rate other users’ profiles, on a scale of 1 to 10. A 1 means “NELÍBÍ”, or “dislike”,

Licensed to nancy chen <amigo4u2009@gmail.com>

http://libimseti.cz/�

67

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

and a 10 means “LÍBÍ”, or “like”. From the presentation of profiles on the site, we infer that users of

such a site are expressing some assessment of the profiled user’s appeal, attractiveness, and

“dateability”. A great deal of this data has been anonymized, made available for research6, and

published by Vaclav Petricek (http://www.occamslab.com/petricek/data/). Because we will be using the

data in this chapter, please obtain a copy of the data from this link7

With 17,359,346 ratings in the data set, this is almost twice as big as our previous data set. It

contains users’ explicit ratings for “items”, where items are here other people’s user profiles. That

means a recommender system built on this data will be recommending people to people. It’s a reminder

to think broadly about recommenders, which aren’t limited to recommending objects like books and

DVDs.

.

5.1.1 Analyzing the input data
The first step is analyzing what data is available to work with, and beginning to form ideas about which

recommender algorithm could be suitable to use with it. The ratings.dat file in the archive you

downloaded is a simple comma-delimited file containing user ID, profile ID, and rating. Each line

represents one user’s rating of one other user’s profile. The data is purposely obfuscated, so we can’t

assume that the user IDs are real user IDs from the site. Profiles are user profiles, and so this data

represents users’ ratings of other users. One might suppose that user IDs and profile IDs are

comparable here, that user ID 1 and profile ID 1 are the same user. This does not appear to be the

case, likely for reasons of anonymity. We can’t make this assumption about the input.

There are 135,359 unique users in the data, who together rated 168,791 unique user profiles.

Because the number of users and items are about the same, neither user-based nor item-based

recommendation is obviously more efficient. If there had been a great deal more profiles than users,

then an item-based recommender would have been relatively slower. Slope-one can be applied here,

even though its memory requirements scale up quickly as the number of items. As we will see, its

memory requirements can be limited.

We also note that the data set has been pre-processed in a way: no users that produced less than

20 ratings are included. In addition, users who seem to have rated every profile with the same value are

also excluded, presumably because it may be spam, or an unserious attempt at rating. The data we do

have comes from users who bothered to make a number of ratings; presumably, their input is useful,

and not “noisy”, compared to the ratings of less-engaged users.

This input is already formatted for use with Mahout’s FileDataModel. The user and profile IDs are

numeric, and, the file is already comma-delimited with fields in the required order: user ID, item ID,

preference value.

5.1.2 Incorporating gender information
The data set provides another interesting set of data: the gender of the user for many of the profiles in

the data set. We are not given the gender of all profiles; in gender.dat, several lines end in “U” which

means “unknown”. We are also not given the gender of the users in the data set -- just the profiles.

6 See also http://www.occamslab.com/petricek/papers/dating/brozovsky07recommender.pdf
7 Neither the site nor publisher of the data endorse or are connected with this book.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://www.occamslab.com/petricek/data/�

68

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 However that means we know something more about each of our items. Male profiles are much

more similar to one another than female profiles -- at least, in the context of being recommended as

potential dates. If we see that most or all of a user’s ratings are for male profiles, it stands to reason

that the user will rate male profiles as far more desirable dates than female. We might view this

information as the basis for an item-item similarity metric.

This isn’t a perfect assumption. Without becoming too sidetracked on sensitive issues of sexuality,

we note that some users of the site may enjoy rating profiles of a gender they are not interested in

dating, for fun. Some users may legitimately have some romantic interest in both genders. In fact, the

very first two ratings in ratings.dat are from one user, and yet appear to be for profiles of different

genders.

It’s important to account for gender in a dating site recommender engine like this; it would be quite

bad to recommend a female to a user interested only in males -- this would surely be viewed as a bad

recommendation, and to some, offensive. This restriction is important, but doesn’t fit neatly into the

standard recommender algorithms. Later in the chapter, we’ll examine how to inject this information as

both a filter, and a similarity metric.

5.2 Finding an effective recommender
To create a complete recommender engine for Líbímseti data, we will need to choose from among the

many implementations we’ve seen already. Our recommender ought to be both fast and produce good

recommendations. Of those two, it’s better to focus on producing good recommendations first, and then

look to performance. After all, what’s the use in producing bad answers quickly?

 We can’t possibly deduce the right implementation from looking at the data; some empirical testing

is needed. Armed with an evaluation framework, we set about collecting some data.

5.2.1 User-based recommenders
User-based recommenders are a natural first stop. We can use several different similarity metrics and

neighborhood definitions. To get some sense of what works and doesn’t, we can try many combinations.

The result of some such experimenting in our test environment is summarized in tables 5.1 and 5.2, and

figures 5.1 and 5.2.

Table 5.1 Average absolute difference in estimated and actual preference, when evaluating a user-based
recommender using one of several similarity metrics, and using a nearest-n user neighborhood

n = 1 2 4 8 16 32 64 128

Euclidean
1.17 1.12 1.23 1.25 1.25 1.33 1.48 1.43

Pearson
1.30 1.19 1.27 1.30 1.26 1.35 1.38 1.47

Log-
likelihood

1.33 1.38 1.33 1.35 1.33 1.29 1.33 1.49

Tanimoto
1.32 1.33 1.43 1.32 1.30 1.39 1.37 1.41

Licensed to nancy chen <amigo4u2009@gmail.com>

69

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Table 5.2 Average absolute difference in estimated and actual preference, when evaluating a user-based
recommender using one of two similarity metrics, and using a threshold-based user neighborhood

t = 0.95 0.9 0.85 0.8 0.75 0.7

Euclidean
1.33 1.37 1.39 1.43 1.41 1.47

Pearson
1.47 1.4 1.42 1.4 1.38 1.37

Log-
likelihood

1.37 1.46 1.56 1.52 1.51 1.43

Tanimoto
NaN NaN NaN NaN NaN NaN

Licensed to nancy chen <amigo4u2009@gmail.com>

70

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 5.1 Visualization of values in table 5.1.

Figure 5.2 Visualization of table 5.2.

Licensed to nancy chen <amigo4u2009@gmail.com>

71

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 These scores aren’t bad. These recommenders are estimating user preferences to within 1.12 to

1.56 points on a scale of 1 to 10, on average.

There are some trends here, even though some individual evaluation results vary from that trend. It

looks like the Euclidean distance similarity metric may be a little better than Pearson, though their

results are quite similar. It also appears that using a small neighborhood is better than a large one; the

best evaluations occur when using a neighborhood of two people! Maybe users’ preferences are truly

quite personal, and incorporating too many others in the computation doesn’t help.

What explains the “NaN” result for the Tanimoto coefficient-based similarity metric? It is listed here

to highlight a subtle point about this methodology. Although all similarity metrics return a value

between -1 and 1, and return higher values to indicate greater similarity, it’s not true that any given

value “means” the same thing for each similarity metric. For example, 0.5 from a Pearson correlation-

based metric indicates moderate similarity. However, 0.5 for the Tanimoto coefficient indicates

significant similarity between two users: of all items known to either of them, half are known to both.

Even though thresholds of 0.7 to 0.95 were reasonable values to test for the other metrics, these are

quite high for a Tanimoto coefficient-based similarity metric. In each case, the bar was set so high that

no user neighborhood was established in any test case! Here, we might have more usefully tested

thresholds from, say, 0.4 on down. In fact, with a threshold of 0.3, the best evaluation score

approaches 1.2.

Similarly, although we see an apparent best value for n in the nearest-n user neighborhood data, we

don’t quite see the same in the threshold-based user neighborhood results. For example, the Euclidean-

distance-based similarity metric seems to be producing better results as the threshold increases.

Perhaps the most valuable users to include in the neighborhood have a Euclidean-based similarity of

over 0.95. What happens at 0.99? 0.999? The evaluation result goes down to about 1.35; not bad, but

not apparently the best recommender.

We leave it as an exercise to the dedicated reader to continue looking for even better configurations.

For our purposes, we will take the current best solution to be:

 User-based recommender

 Euclidean distance similarity metric

 Nearest-2 neighborhood

5.2.2 Item-based recommenders
Item-based recommenders involve fewer choices: we need only choose an item similarity metric. We

can easily try each similarity metric and see what works best. Again, table 5.3 summarizes the

outcome.

Licensed to nancy chen <amigo4u2009@gmail.com>

72

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Table 5.3 Average absolute differences in estimated and actual preference, when evaluating an item-
based recommender using several different similarity metrics.

 Score

Euclidean
2.36

Pearson
2.32

Log-likelihood
2.38

Tanimoto
2.40

Scores are notably worse here; the average error, or difference between estimated and actual

preference value, has roughly doubled to over 2. For this data, the item-based approach isn’t as

effective, for some reason. We could speculate as to why. Before, we computed similarities between

users in a user-based approach, based on how users rated other users’ profiles. Now, we’re computing

similarity between user profiles based on how other users rated that profile. Maybe this isn’t as

meaningful -- maybe ratings tell us more about the rater than the rated profile. Whatever the

explanation, it seems clear from these results that item-based recommendation isn’t the best choice

here.

5.2.3 Slope-one recommender
Recall that the slope-one recommender constructs a “diff” for most item-item pairs in the data model.

With 168,791 items (profiles) here, this means storing potentially 28 billion diffs -- far too much to fit in

memory. Storing these diffs in a database is possible, but will greatly slow performance. In fact, we

have another option, which is to ask the framework to limit the number of diffs stored to perhaps ten

million, as seen in listing 5.1. It will attempt to choose the most useful diffs to keep. “Most useful” here

means those diffs between a pair of items that turn up most often together in the list of items

associated to a user. For example, if items A and B appear in the preferences of hundreds of users, the

average diff in their preference values is likely significant, and useful. If A and B only appear together in

the preferences of one user, it sounds more like a fluke than a piece of data worth storing.

Listing 5.1 Limiting memory consumed by MemoryDiffStorage
DiffStorage diffStorage = new MemoryDiffStorage(
 model, Weighting.WEIGHTED, true, 10000000L);
return new SlopeOneRecommender(
 model, Weighting.WEIGHTED, Weighting.WEIGHTED, diffStorage);

Indeed, from examining the log output, this keeps memory consumption to about 1.5GB. You’ll also

notice again how fast slope-one is; on the workstation used for testing, we saw average

recommendation times under 10 milliseconds, compared to 200 milliseconds or so for other algorithms.

Licensed to nancy chen <amigo4u2009@gmail.com>

73

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

The evaluation result is about 1.41. This is not a bad result, but not quite as good a result as we

observed with user-based recommenders above. It is likely not worth pursuing slope-one for this

particular data set.

5.2.4 Evaluating precision and recall
Above, we did experiment with a Tanimoto coefficient-based similarity metric and log-likelihood-based

metric, and as we know these are metrics which do not use preference values. However, we did not yet

examine recommenders that completely ignore rating values. Such recommenders can’t be evaluated in

the same way -- there are no estimated preference values to evaluate against real values, because

there are no preference values at all. It’s possible to examine precision and recall of such recommenders

versus the current best solution: user-based recommender, Euclidean distance metric, and nearest-2

neighborhood.

We can evaluate the precision and recall of this recommender engine as seen in previous chapters,

using a RecommenderIRStatsEvaluator. It reveals that precision and recall at 10 are about 3.6%

and 5%, respectively. This seems low: the recommender rarely recommends the users’ own top-rated

profiles, when those top-rated profiles are removed. In this context, that’s not obviously a bad thing.

It’s conceivable that a user might see plenty of “perfect 10s” on such a dating site, and perhaps has

only ever encountered and rated some of them. It could be that the recommender is suggesting even

more desirable profiles than the user has seen! Certainly, this is what the recommender is

communicating, that the users’ top-rated profiles aren’t usually the ones they would like most, were

they to actually review every profile in existence.

The other explanation, of course, is that the recommender isn’t functioning well. However we know

this recommender is fairly good at estimating preference values, usually estimating ratings within about

1 point on a 10-point scale. So this explanation could be valid.

An interesting thing happens when we switch to ignore rating data by using

GenericBooleanPrefDataModel, GenericBooleanPrefUserBasedRecommender, and an

appropriate similarity metric like LogLikelihoodSimilarity. Precision and recall increase to over

22% in this case. Similar results are seen with TanimotoCoefficientSimilarity. It seems better

on the surface; what the result says it that this sort of recommender engine is better at recommending

back those profiles which the user might already have encountered. If we had reason to believe users

had in fact reviewed a large proportion of all profiles, then their actual top ratings would be a strong

indicator of what the “right” answers are. This does not seem to be the case on a dating site with

hundreds of thousands of profiles.

In other contexts, a high precision and recall figure may be important. Here, it does not seem to be

as important. For our purposes here, we will move forward with the previous user-based recommender,

with Euclidean distance similarity and nearest-2 neighborhood, instead of opting to switch to one of

these other recommenders.

5.2.5 Evaluating Performance
Finally we should look at the runtime performance of this recommender engine that we have identified.

Because we intend to call it in real-time, it would do little good to produce a recommender that needs

minutes to compute a recommendation!

Licensed to nancy chen <amigo4u2009@gmail.com>

74

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

The LoadEvaluator class can be used, as before, to assess per-recommendation runtime. We ran

this recommender on the data set with flags “-server -d64 -Xmx2048m -XX:+UseParallelGC -
XX:+UseParallelOldGC” and found an average recommendation time of 218 milliseconds on our test

machine. The application consumes only about a gigabyte of heap at runtime. Whether or not these

values are acceptable or not will depend on application requirements and available hardware. These

figures seem reasonable for many applications.

5.3 Injecting domain-specific information
So far we’ve not taken advantage of any domain-specific knowledge here. We have used the user-profile

rating data as if it could be anything at all -- ratings for books or cars or fruit. Here we look at how we

could incorporate additional information we have in this domain to improve recommendation.

5.3.1 Employing a custom item similarity metric
Because we know the gender of many profiles, we could create a simple similarity metric for pairs of

profiles based only on gender. Profiles are items, so this would be an ItemSimilarity in the

framework. For example, we could call two male or two female profiles “very similar” and assign them a

similarity of 1.0. We could say the similarity between a male and female profile is -1.0. Finally, we could

assign a 0.0 to profile pairs where the gender of one or both is unknown.

The idea is simple, perhaps overly simplistic. It would be fast, but would discard all rating-related

information from the metric computation. For the sake of experimentation, let’s try it out with an item-

based recommender.

Listing 5.2 A gender-based item similarity metric
public class GenderItemSimilarity implements ItemSimilarity {

 private final FastIDSet men;
 private final FastIDSet women;

 public GenderItemSimilarity(FastIDSet men, FastIDSet women) {
 this.men = men;
 this.women = women;
 }

 @Override
 public double itemSimilarity(long profileID1, long profileID2) {
 Boolean profile1IsMan = isMan(profileID1);
 if (profile1IsMan == null) {
 return 0.0;
 }
 Boolean profile2IsMan = isMan(profileID2);
 if (profile2IsMan == null) {
 return 0.0;
 }
 return profile1IsMan == profile2IsMan ? 1.0 : -1.0;
 }

 private Boolean isMan(long profileID) {
 if (men.contains(profileID)) {
 return Boolean.TRUE;
 }
 if (women.contains(profileID)) {

Licensed to nancy chen <amigo4u2009@gmail.com>

75

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 return Boolean.FALSE;
 }
 return null;
 }

 @Override
 public void refresh(Collection<Refreshable> alreadyRefreshed) {
 // do nothing
 }

}

We can pair this ItemSimilarity metric with a standard GenericItemBasedRecommender, as

before, and evaluate its accuracy. The concept is interesting, but the result here is not better than with

other metrics: 2.35. If we had more information available, such as the interests and hobbies expressed

on each profile, we could construct a more meaningful similarity metric that might yield better results.

This example, however, illustrates the main advantage of item-based recommenders: it provides a

means to incorporate information about items themselves, which is commonly available in recommender

problems. From the evaluation results, you also perhaps noticed how this kind of recommender is fast

when based on such an easy-to-compute similarity metric; on our test machine, recommendations were

produced in about 15 milliseconds on average.

5.3.2 Recommending based on content
If you blinked, you might have missed it -- we just saw an example of content-based recommendation

in the last section. Above, we added a notion of item similarity that was not based on user preferences,

but that was based on attributes of the item itself.

This is a simple but legitimate instance of a content-based recommendation technique. As stated

above, it’s a powerful addition to pure collaborative filtering approaches, which are based only on user

preferences. We can usefully inject our knowledge about items (here, people) to augment the user

preference data we have, and hopefully produce better recommendations.

Unfortunately the item similarity metric above is specific to the problem domain at hand. This metric

doesn’t help recommendations in other domains: recommending food, or movies, or travel destinations.

This is why it’s not part of the framework. But, it is a feasible and powerful approach any time you have

domain-specific knowledge beyond user preferences about how items are related.

5.3.3 Modifying recommendations with IDRescorer
You may have observed an optional, final argument to the Recommender.recommend() method of

type IDRescorer; instead of calling recommend(long userID, int howMany), you can call

recommend(long userID, int howMany, IDRescorer rescorer). These objects show up in

several parts of the Mahout recommender-related APIs. Implementations can transform values used in

the recommender engine to other values based on some logic, or else exclude an entity from

consideration in some process. For example, an IDRescorer may be used to arbitrarily modify a

Recommender’s estimated preference value for an item. It can also remove an item from consideration

entirely.

For example, suppose you were recommending books to a user on an e-commerce site. The user in

question is currently browsing mystery novels. So, when recommending books to that user at that

moment, you might wish to boost estimated preference values for all mystery novels. You may also

Licensed to nancy chen <amigo4u2009@gmail.com>

76

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

wish to ensure that no out-of-stock books are recommended. An IDRescorer can help you do this.

Below in listing 5.3 is an IDRescorer implementation that encapsulates this logic in term some classes

from this fictitious bookseller:

Listing 5.3 Example IDRescorer that omits out-of-stock books and boosts a genre
public class GenreRescorer implements IDRescorer {

 private final Genre currentGenre;

 public GenreRescorer(Genre currentGenre) {
 this.currentGenre = currentGenre;
 }

 public double rescore(long itemID, double originalScore) {
 Book book = BookManager.lookupBook(itemID); A
 if (book.getGenre().equals(currentGenre)) {
 return originalScore * 1.2; B
 }
 return originalScore; C
 }

 public boolean isFiltered(long itemID) {
 Book book = BookManager.lookupBook(itemID);
 return book.isOutOfStock(); D
 }
}

A Assume we have some BookManager with this method available
B Boost estimated preference for matching genre books by 20%
C Don’t change anything else
D Filter out books that are not in stock now

The rescore() method boosts estimated preference value for mystery novels. The isFiltered()

method demonstrates the other use of IDRescorer: it ensures that no out-of-stock books are

considered for recommendation. This is merely an example, and not relevant to our dating site. Let’s

turn to apply this idea with the extra data we do have: gender.

5.3.4 Incorporating gender in an IDRescorer
We can use an IDRescorer to filter out “items”, or user profiles, for users whose gender may not

be of romantic interest. We can do this by first guessing the user’s preferred gender by examining the

gender of profiles rated so far. Then, we filter out profiles of the opposite gender, as seen in listing 5.4.

Listing 5.4 Gender-based rescoring implementation
public class GenderRescorer implements IDRescorer {

 private final FastIDSet men;
 private final FastIDSet women;
 private final FastIDSet usersRateMoreMen; A
 private final FastIDSet usersRateLessMen;
 private final boolean filterMen;

 public GenderRescorer(FastIDSet men,
 FastIDSet women,

Licensed to nancy chen <amigo4u2009@gmail.com>

77

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 FastIDSet usersRateMoreMen,
 FastIDSet usersRateLessMen,
 long userID, DataModel model)
 throws TasteException {
 this.men = men;
 this.women = women;
 this.usersRateMoreMen = usersRateMoreMen;
 this.usersRateLessMen = usersRateLessMen;
 this.filterMen = ratesMoreMen(userID, model);
 }

 public static FastIDSet[] parseMenWomen(File genderFile)
 throws IOException { B
 FastIDSet men = new FastIDSet(50000);
 FastIDSet women = new FastIDSet(50000);
 for (String line : new FileLineIterable(genderFile)) {
 int comma = line.indexOf(',');
 char gender = line.charAt(comma + 1);
 if (gender == 'U') {
 continue;
 }
 long profileID = Long.parseLong(line.substring(0, comma));
 if (gender == 'M') {
 men.add(profileID);
 } else {
 women.add(profileID);
 }
 }
 men.rehash(); C
 women.rehash();
 return new FastIDSet[] { men, women };
 }

 private boolean ratesMoreMen(long userID, DataModel model)
 throws TasteException {
 if (usersRateMoreMen.contains(userID)) {
 return true;
 }
 if (usersRateLessMen.contains(userID)) {
 return false;
 }
 PreferenceArray prefs = model.getPreferencesFromUser(userID);
 int menCount = 0;
 int womenCount = 0;
 for (int i = 0; i < prefs.length(); i++) {
 long profileID = prefs.get(i).getItemID();
 if (men.contains(profileID)) {
 menCount++;
 } else if (women.contains(profileID)) {
 womenCount++;
 }
 }
 boolean ratesMoreMen = menCount > womenCount; D
 if (ratesMoreMen) {
 usersRateMoreMen.add(userID);
 } else {
 usersRateLessMen.add(userID);
 }
 return ratesMoreMen;

Licensed to nancy chen <amigo4u2009@gmail.com>

78

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 }

 @Override
 public double rescore(long profileID, double originalScore) {
 return isFiltered(profileID) ? Double.NaN : originalScore; E
 }

 @Override
 public boolean isFiltered(long profileID) {
 return filterMen ? men.contains(profileID) : women.contains(profileID);
 }

}

A Cache assessment of which users rate more male profiles
B Will be called separately later
C Optimizes data structure again for fast access
D Users rating more men probably like male profiles
E Return NaN for profiles that should be excluded

A few things are happening in this code example. The method parseMenWomen() will parse

gender.dat and create two sets of profile IDs -- those that are known to be men, and those known to

be women. This is parsed separately from any particular instance of GenderRescorer since these sets

will be reused many times. ratesMoreMen() will be used to determine and remember whether a user

seems to rate more male or female profiles. These results are cached in two additional sets. Instances

of this GenderRescorer will then simply filter out men, or women, as appropriate, by returning NaN

from rescore(), or true from isFiltered().

This ought to have some small but helpful effect on the quality of recommendations. Presumably,

women who rate male profiles are already being recommended male profiles, because they will be most

similar to other women who rate male profiles, and will be recommended those profiles. This mechanism

will ensure this, by filtering female profiles from results. It will cause the Recommender to not even

attempt to estimate these women’s preference for female profiles because such an estimate is quite a

guess, and wrong. Of course, the effect of this IDRescorer is limited by the quality of data available:

we only know the gender of about half of the profiles.

5.3.5 Building a custom Recommender around an IDRescorer
It will be useful for our purposes here to wrap up our entire, current recommender engine, plus the new

IDRescorer, into one implementation. This will become necessary in the next section when we need to

deploy one self-contained recommender engine to production. Listing 5.5 shows a Recommender

implementation that contains inside it the user-based recommender engine we’ve identified as best

suited to our data set.

Listing 5.5 Complete recommender implementation for Líbímseti
public class LibimsetiRecommender implements Recommender {

 private final Recommender delegate;
 private final DataModel model;
 private final FastIDSet men;
 private final FastIDSet women;

 public LibimsetiRecommender() throws TasteException, IOException {

Licensed to nancy chen <amigo4u2009@gmail.com>

79

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 this(new FileDataModel(
 RecommenderWrapper.readResourceToTempFile("ratings.dat")); A
 }

 public LibimsetiRecommender(DataModel model)
 throws TasteException, IOException {
 UserSimilarity similarity = new EuclideanDistanceSimilarity(model); B
 UserNeighborhood neighborhood =
 new NearestNUserNeighborhood(2, similarity, model);
 delegate =
 new GenericUserBasedRecommender(model, neighborhood, similarity);
 this.model = model;
 FastIDSet[] menWomen = GenderRescorer.parseMenWomen(
 RecommenderWrapper.readResourceToTempFile("gender.dat"));
 men = menWomen[0];
 women = menWomen[1];
 }

 @Override
 public List<RecommendedItem> recommend(long userID, int howMany)
 throws TasteException {
 IDRescorer rescorer = new GenderRescorer(men, women, userID, model); C
 return delegate.recommend(userID, howMany, rescorer);
 }

 @Override
 public List<RecommendedItem> recommend(long userID,
 int howMany,
 IDRescorer rescorer)
 throws TasteException {
 return delegate.recommend(userID, howMany, rescorer);
 }

 @Override
 public float estimatePreference(long userID, long itemID)
 throws TasteException {
 IDRescorer rescorer = new GenderRescorer(men, women, userID, model); D
 return (float) rescorer.rescore(
 itemID, delegate.estimatePreference(userID, itemID));
 }

 @Override
 public void setPreference(long userID, long itemID, float value)
 throws TasteException {
 delegate.setPreference(userID, itemID, value); E
 }

 @Override
 public void removePreference(long userID, long itemID)
 throws TasteException {
 delegate.removePreference(userID, itemID);
 }

 @Override
 public DataModel getDataModel() {
 return delegate.getDataModel();
 }

 @Override

Licensed to nancy chen <amigo4u2009@gmail.com>

80

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 public void refresh(Collection<Refreshable> alreadyRefreshed) {
 delegate.refresh(alreadyRefreshed);
 }

}

A Will need readResourceToTempFile() when deploying in production
B Construct the same user-based recommender inside
C Force all recommendations to use our GenderRescorer
D Rescore estimated preferences too
E Delegate everything else to underlying user-based recommender

This is a tidy, self-contained packaging of the recommender engine. We can evaluate the entire

thing, as before. The result is about 1.18: virtually unchanged, though we might feel better with this

mechanism in place that ought to avoid some seriously undesirable recommendations. Running time has

increased to 500 milliseconds or so. The rescoring has added significant overhead. For our purposes, we

will accept this tradeoff and continue forward with LibimsetiRecommender as our final

implementation for this dating site.

5.4 Recommending to anonymous users
Since we are talking about recommenders in practice, this is a good place to discuss how to handle a

common real-world issue: recommending to users that aren’t users yet. What can be done, for instance,

for the new user browsing products in an e-commerce web site? This anonymous user has no browsing

or purchase history, let alone an ID, as far as the site is concerned. It is nevertheless valuable to be

able to recommend products to such a user.

One approach is to not bother personalizing the recommendations. That is, when presented with a

new user, present a general predefined list of products to recommend. It’s simple, and usually better

than nothing.

At the other end of the spectrum, a site could promote such anonymous users to real users on first

visit, and assign an ID and track his or her activity merely based on a web session. This is also works,

though potentially explodes the number of users, who by definition may never return and for whom little

information exists.

5.4.1 Temporary users with PlusAnonymousUserDataModel
The recommender framework offers a simple way to temporarily add an anonymous user’s information

into the DataModel: PlusAnonymousUserDataModel. This approach treats anonymous users like

real users, but only for as long as it takes to make recommendations. They are never added to or

known to the real underlying DataModel. It is a wrapper around any existing DataModel and is simply

a drop-in replacement

This class has a spot for one temporary user, and can hold preferences for one such user at a time.

As such, a Recommender based on this class must only operate on one anonymous user at a time.

Listing 5.6 presents LibimsetiWithAnonymousRecommender, which extends the previous

LibimsetiRecomender with a method that can recommend to an anonymous user. It takes

preferences as input rather than a user ID, of course.

Listing 5.6 Anonymous user recommendation for Líbímseti
public class LibimsetiWithAnonymousRecommender

Licensed to nancy chen <amigo4u2009@gmail.com>

81

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 extends LibimsetiRecommender {

 private final PlusAnonymousUserDataModel plusAnonymousModel;

 public LibimsetiWithAnonymousRecommender()
 throws TasteException, IOException {
 this(new FileDataModel(
 RecommenderWrapper.readResourceToTempFile("ratings.dat")));
 }

 public LibimsetiWithAnonymousRecommender(DataModel model)
 throws TasteException, IOException {
 super(new PlusAnonymousUserDataModel(model)); A
 plusAnonymousModel =
 (PlusAnonymousUserDataModel) getDataModel();
 }

 public synchronized List<RecommendedItem> recommend(B
 PreferenceArray anonymousUserPrefs, int howMany)
 throws TasteException {
 plusAnonymousModel.setTempPrefs(anonymousUserPrefs);
 List<RecommendedItem> recommendations =
 recommend(PlusAnonymousUserDataModel.TEMP_USER_ID, howMany, null);
 plusAnonymousModel.setTempPrefs(null);
 return recommendations;
 }

 public static void main(String[] args) throws Exception {
 PreferenceArray anonymousPrefs =
 new GenericUserPreferenceArray(3); D
 anonymousPrefs.setUserID(0,
 PlusAnonymousUserDataModel.TEMP_USER_ID);
 anonymousPrefs.setItemID(0, 123L);
 anonymousPrefs.setValue(0, 1.0f);
 anonymousPrefs.setItemID(1, 123L);
 anonymousPrefs.setValue(1, 3.0f);
 anonymousPrefs.setItemID(2, 123L);
 anonymousPrefs.setValue(2, 2.0f);
 LibimsetiWithAnonymousRecommender recommender =
 new LibimsetiWithAnonymousRecommender();
 List<RecommendedItem> recommendations =
 recommender.recommend(anonymousPrefs, 10);
 System.out.println(recommendations);
 }

}

A Wraps the underlying DataModel
B Note synchronization
C TEMP_USER_ID is anonymous user’s “ID”
D Example anonymous user prefs

This implementation otherwise walks and talks like a Recommender and may be used to recommend

to real users as well.

5.4.2 Aggregating anonymous users
Finally, we note that it is also possible to treat all anonymous users as if they are one user. This

simplifies things. Rather than track those potential users browsing a site separately and storing their

Licensed to nancy chen <amigo4u2009@gmail.com>

82

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

browsing histories individually, one could think of all such users as like one big “tire-kicking” user. This

depends upon the assumption that all such users behave meaningfully similarly.

 At any time, the technique above can produce recommendations for the anonymous user. This is

fast. In fact, since the result is the same for all anonymous users, the set of recommendations can be

stored and recomputed periodically instead of upon every request. In a sense, this variation nearly

reduces to not personalizing recommendations, and just presenting anonymous users with a fixed set of

recommendations.

5.5 Creating a web-enabled service
Creating a recommender that runs in your IDE is fine, but chances are you are interested in deploying

this recommender in a production application. Of course, if your application is written in Java, you can

directly include the Mahout library and your implementation, and call to the Recommender

implementation however you like. This is quite flexible.

5.5.1 Constructing a servlet container
However, you may wish to deploy a recommender as a stand-alone component of your application

architecture, rather than embed it inside your application code. It is common for services to be exposed

over the web, via simple HTTP or web services protocols like SOAP. In this scenario, a recommender is

deployed as a web-accessible service as an independent component in a web container, or even as its

own server process. This adds complexity, but it allows other applications written in other languages, or

running on other machines, to access the service.

Figure 5.3 Automated WAR packaging of a recommender and deployment in a servlet container

Licensed to nancy chen <amigo4u2009@gmail.com>

83

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Fortunately, Mahout makes it simple to bundle your Recommender implementation into a deployable

WAR (web archive) file. Such a component can be readily deployed into any Java Servlet container, such

as Tomcat (http://tomcat.apache.org/) or Resin (http://www.caucho.org/resin/). This WAR file,

illustrated in figure 5.3, wraps up your Recommender implementation and exposes it via a simple

servlet-based HTTP service, RecommenderServlet, and as an Apache Axis-powered web service using

SOAP over HTTP, RecommenderService.

5.5.2 Packaging a WAR file
The compiled code, plus data file, will need to be packaged into a JAR file first. Chances are you have

already compiled this code with your IDE, which has placed the compiled .class files into some output

directory -- we’ll call it out. Copy the data set’s ratings.dat and gender.dat files into this same

output directory, then make a JAR file with a command like “jar cf libimseti.jar -C out/ .”.

In the taste-web/ module directory, place the libimseti.jar file into the lib/ subdirectory.

Also, edit recommender.properties to name our recommender as the one that will be deployed. If

you used the same package as the code listing above, then the right value is

“mia.recommender.libimseti.LibimsetiRecommender”.

Now execute “mvn package”. You should find a .war file in the target/ subdirectory named

“mahout-taste-webapp-0.4-SNAPSHOT.war” (the version number may be higher if, by the time

you read this, Mahout has published further releases). This is suitable for immediate deployment in a

servlet container like Tomcat. In fact, this can be dropped in to Tomcat’s webapps/ directory without

further modification to produce a working web-based instance of your recommender. Note that the

name of the .war file will become part of the URL used to access the services; you may therefore wish

to rename it to something shorter like “mahout.war”.

5.5.3 Testing deployment
Alternatively, if you like, you can easily test this without bothering to set up Tomcat by using Maven’s

built-in Jetty plugin. Jetty (http://www.mortbay.org/jetty/) is an embeddable servlet container, which

serves a function similar to that of Tomcat or Resin.

Before firing up a test deployment, you’ll need to ensure that your local Mahout installation has been

compiled and made available to Maven. Execute “mvn install” from the top-level Mahout directory

and take a coffee break, since this will cause Maven to download other dependencies, compile, and run

tests, all of which takes ten minutes or so. This only needs to be done once.

 Having packaged the WAR file above, execute “export MAVEN_OPTS=-Xmx2048m” to ensure

Maven and Jetty have plenty of heap space available, then from the taste-web/ directory, “mvn
jetty:run-war”. This will start up the web-enabled recommender services on port 8080 on your local

machine.

In your web browser, navigate to the URL http://localhost:8080/mahout-taste-
webapp/RecommenderServlet?userID=1 to retrieve recommendations for user ID 1. This is

precisely how an external application could access recommendations from your recommender engine, by

issuing an HTTP GET request for this URL and parsing the simple text result: recommendations, one

estimated preference value and item ID per line, with best preference first.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://tomcat.apache.org/�
http://www.caucho.org/resin/�
http://www.mortbay.org/jetty/�

84

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Listing 5.7 Output of a GET to RecommenderServlet
10.0 174211
10.0 143717
10.0 220429
10.0 60679
10.0 215481
10.0 136297
9.0 192791
9.0 157343
9.0 152029
9.0 164233
9.0 207661
8.0 209192
7.0 208516
7.0 196605
7.0 2322
7.0 213682
7.0 205059
7.0 118631
7.0 208304
7.0 212452

To explore the more formal SOAP-based web service API that is available, access

http://localhost:8080/mahout-taste-webapp/RecommenderService.jws?wsdl to see the

WSDL (Web Services Definition Language) file that defines the input and output of this web service. It

exposes a simplified version of the Recommender API. This web services description file can be

consumed by most web service client tools, to automatically understand and provide access to the API.

If interested in trying the service directly in a browser, access http://localhost:8080/mahout-
taste-webapp/RecommenderService.jws?method=recommend&userID=1&howMany=10 to see

the SOAP-based reply from the service. It is the same set of results, just presented as a SOAP response.

Figure 5.4 Browser rendering of the SOAP response from RecommenderService

Normally, at this point, you would be sanity-checking the results. Put yourself in your users’ shoes --

do the recommendations make sense? Here, we don’t know who the users are or what the profiles are

like, so we can’t do much to interpret the results intuitively. This would not be true when developing

Licensed to nancy chen <amigo4u2009@gmail.com>

85

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

your own recommender engine, where a look at the actual recommendations would likely give insight

into problems or opportunities for refinement. This would lead to more cycles of experimentation and

modification to make the results match the most appropriate answers for your problem domain.

5.6 Updating and monitoring the Recommender
Now you have a live web-based recommender service running, but it’s not a static, fixed system. It’s

natural to think about how service will be updated and monitored in production.

5.6.1 Updating recommender data directly
Of course, the data on which recommendations are based changes constantly in a real recommender

engine system. Standard DataModel implementations will automatically use the most recent data

available from your underlying data source, so, at a high level, there is nothing special that needs to be

done to cause the recommender engine to incorporate new data. For example, if you had based your

recommender engine on data in a database, by using a JDBCDataModel, then by just updating the

underlying database table with new data, the recommender engine would begin using that data.

However, for performance, many components cache information and intermediate computations.

These caches update eventually, but, this means that new data does not necessarily immediately affect

recommendations. It is possible to force all caches to clear by calling Recommender.refresh(), and,

this can be done by invoking the refresh method on the SOAP-based interface that is exposed by the

web application harness. If needed, this can be invoked by other parts of your enterprise architecture.

5.6.2 Updating file-based data
File-based preference data, accessed via a FileDataModel, deserves some special mention. The file

can be updated or overwritten in order to deploy updated information; FileDataModel will shortly

thereafter notice the update and reload the file.

This can be slow, and memory-intensive, as both the old and new model will be in memory at the

same time. Now is a good time to recall “update files,” introduced in an earlier chapter. Instead of

replacing or updating the main data file, it is more efficient to add update files representing recent

updates. The update files are like “diffs” and when placed in the same directory as the main data file

and named appropriately, will be detected and applied quickly to the in-memory representation of the

preference data.

For example, an application might each hour locate all preference data created, deleted or changed

in the last 60+ minutes, create an update file, and copy it alongside the main data file. Recall also that

for efficiency, all of these files may be compressed.

5.6.3 Monitoring performance
Monitoring the health of this recommender service is straightforward, even if support for monitoring is

outside the scope of Mahout itself. Any monitoring tool that can check the health of a web-based

service, accessed via HTTP, can easily check that the recommender service is live by accessing the

service URL and verifying a valid answer is returned. Such tools can and should also monitor the time it

takes to answer these requests and create an alert if performance suddenly degrades. Normally, the

time to compute a recommendation is quite consistent and should not vary greatly.

Licensed to nancy chen <amigo4u2009@gmail.com>

86

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

5.7 Summary
In this chapter, we took an in-depth look at a real, large data set made available from the Czech dating

site Líbímseti. It provides 17 million ratings of over a hundred thousand profiles on the site from over a

hundred thousand users. We set out to create a recommender for this site that could recommend

profiles, or people, to its users.

We tried most of the recommender approaches seen so far with this data set and used evaluation

techniques to choose an implementation that seemed to produce the best recommendations: a user-

based recommender using a Euclidean distance-based similarity metric and nearest-2 neighborhood

definition.

From there, we explored mixing in additional information from the data set: gender of the users

featured in many of the profiles. We tried creating an item similarity metric based on this data. We met

the IDRescorer interface, a practical tool that can be used to modify results in ways specific to one

problem domain. We achieved a small improvement by using an IDRescorer to take account of gender

and exclude recommendations from the gender that does not apparently interest the user.

Having tested performance and found that it performs acceptably (about 500ms per

recommendation) we constructed a deployable version of our recommender engine, and automatically

created a web-enabled application around it using Mahout. We briefly examined how to deploy and

access this component via HTTP and SOAP.

Finally we reviewed how to update, at runtime, the recommender’s underlying data.

This concludes the journey from data to production-ready recommender service. This

implementation can comfortably digest this data set of 17 million ratings on one machine and produce

recommendations in real time. What happens when the data outgrows one machine? In the next

chapter, we’ll examine how to handle a much larger data set with Hadoop.

Licensed to nancy chen <amigo4u2009@gmail.com>

87

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

6
Distributing Recommendation

 Computations

This chapter covers

 Analyzing a massive data set from Wikipedia

 Producing recommendations with Hadoop and distributed algorithms

 Pseudo-distributing existing non-distributed recommenders

We’ve looked at increasingly large data sets since the beginning of this book: from tens of

preferences, to 100,000, to 10 million and then 17 million. This is still only medium-sized in the world of

recommenders. In this chapter, we’ll up the ante again by tackling a larger data set of 130 million

“preferences” in the form of article-to-article links from Wikipedia’s massive corpus8

While 130 million preferences is still a manageable size for demonstration purposes, it is of such a

scale that a single machine would have trouble processing recommendations from it in the way we’ve

seen to date. We will need to deploy a new species of recommender algorithm, using a distributed

computing approach based on the MapReduce paradigm and Hadoop.

. In this data set,

both users and items are articles, which also demonstrates how recommenders can be useful applied to

less conventional contexts.

6.1 Analyzing the massive Wikipedia data set
Wikipedia (http://wikipedia.org) is a well-known online encyclopedia whose contents may be edited and

maintained by users. It reports that in May 2010 it contained over 3.2M articles written in English alone.

The Freebase Wikipedia Extraction project (http://download.freebase.com/wex/) estimates the size of

just the English articles to be about 42GB. Being web-based, Wikipedia articles can and do link to one

8 Readers of earlier drafts will recall the subject of this chapter was the Netflix Prize data set. This data set is no longer officially
distributed for legal reasons, and so is no longer a suitable example data set.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://wikipedia.org/�
http://download.freebase.com/wex/�

88

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

another. It is these links that are of interest. We will think of articles as “users”, and articles that an

article points to as “items” that the source article “likes”.

Fortunately, we do not even have to download Freebase’s well-organized Wikipedia extract and parse

out all these links. Researcher Henry Haselgrove has already extracted all article links and published

just this information at http://users.on.net/~henry/home/wikipedia.htm. This further filters out links to

ancillary resources like article discussion pages, images, and such. This data set has also represented

articles by their numeric ID rather than title, which is helpful, since Mahout treats all users and items as

numeric IDs.

Before continuing, download and extract links-simple-sorted.zip.

6.1.1 Analyzing the data set
This link data set contains 130,160,392 links from 5,706,070 articles, to 3,773,865 distinct other

articles. Note that there is no explicit preference or rating; there are just associations from articles to

articles. These are “boolean preferences” in the language of the framework. Associations are one-way; a

link from A to B does not imply any association from B to A. There are not significantly more items than

users or vice versa, so neither a user-based nor item-based algorithms suggests itself as better from an

performance perspective. If using an algorithm that involves a similarity metric, one that does not

depend on preference values is appropriate, like LogLikelihoodSimilarity.

How may we intuitively understand what the data means, and what shall we expect from the

recommendations? A link from article A to B implies that B provides information related to A, typically

background information on entities or ideas referenced in the article. A recommender system built on

this data will recommend articles that are pointed to by other articles which also point to some of the

same articles that A points to. These other articles might be interpreted as articles that A should link to,

but does not. They could be articles that are simply also of interest to a reader of A. In some cases, the

recommendations may reveal interesting or serendipitous associations that are not even implied by

article A.

6.1.2 Struggling with scale
Deploying a non-distributed recommender engine based on this data could prove difficult. The data

alone would consume about 2GB of JVM heap space with Mahout, and overall heap would likely need to

be 2.5GB. On some 32-bit platforms and JVMs, this actually exceeds the maximum heap size that can

be selected. This means a 64-bit machine would be required, if not immediately then soon. Depending

on the algorithm, recommendation time could increase to over one second, which begins to be a long

time for a “real-time” recommender engine supporting a modern web application.

With enough hardware, this could perform acceptably. But what happens when the input grows to a

few billion preferences, and heap requirements top 32GB? And beyond that? For a time, one could

combat scale by throwing out progressively more of the “noise” data to keep its size down. Judging

what is noise begins to be a problem of accuracy and scale in its own right.

It’s unfashionable these days to be unable to cope with data beyond some scale, to have some hard

limit on what your system can handle. Computing resources are readily available in large quantities; the

problem here is putting enough computing resources into one box. It is disproportionately expensive to

make a large machine even larger, as compared to obtaining more small machines. This massive single

Licensed to nancy chen <amigo4u2009@gmail.com>

http://users.on.net/~henry/home/wikipedia.htm�

89

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

machine becomes a single point of failure. And, it may be hard to find any efficient way to take

advantage of its expensive power when not in use by the recommender engine process.

This Wikipedia link data set size represents about the practical upper limit of how much data can be

thrown at a Mahout-based real-time recommender on reasonable server hardware -- and it’s not even

that big by modern standards. Beyond about this scale, a new approach is needed.

6.1.2 Evaluating benefits and drawbacks of distributing computations
A solution lies in using many small machines, not one big one, for all the reasons that using one big

machine is undesirable. An organization may own and operate, already, many small machines available

that aren’t fully utilized, and whose extra capacity could be used towards computing recommendations.

Furthermore, the resources of many machines are readily available these days through cloud computing

providers like Amazon’s EC2 service (http://aws.amazon.com).

Figure 6.1 Distributed computation helps by breaking up a problem too big for one server into pieces that several
smaller servers can handle.

Distributing a recommendation computation radically changes the recommender engine problem.

Every algorithm we’ve seen so far computes recommendations as a function of, in theory, every single

preference value. To recommend new links for a single article from the Wikipedia link data set, we

would need access to all article-to-article links; the computation could draw on any of them. However,

at large scale, access to all or even most of the data is not possible at any one time, because of its

sheer size. All of the approaches we’ve seen so far go out the window, at least in anything like their

current form. Distributed recommender engine computations are a whole new ball game.

 To be clear, distributing a computation doesn’t make it more efficient. On the contrary, it usually

makes it require significantly more resources. For instance, moving data between many small machines

consumes network resources. The computation must often be structured in a way that involves

computing and storing many intermediate results, which could take significant processing time to

serialize, store, and deserialize later. The software that orchestrates these operations consumes non-

trivial memory and processing power.

It should be noted that such large, distributed computations are necessarily performed offline, not in

real time in response to user requests. Even small computations of this form take at least minutes, not

milliseconds, to complete. Commonly, recommendations would be recomputed at regular intervals,

stored, and returned to the user at runtime.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://aws.amazon.com/�

90

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

However, these approaches offer a means to complete a recommender engine computation at scales

where non-distributed computations cannot even start due to lack of resources on a single machine.

Because distributed computations can leverage bits of resources from many machines, they offer the

possibility of using spare, unused resources from existing machines rather than dedicated machines.

Finally, distributed computations can allow a computation to complete earlier -- even though it might

take more raw processing time. Say a distributed computation takes twice as much CPU time as its non-

distributed counterpart. If 10 CPUs work on the computation, it will complete 5 times faster than a non-

distributed version, which can only take advantage of one machine’s resources.

6.2 Distributing an item-based algorithm
For problems of this scale, it is desirable and necessary to deploy a distributed approach to produce

recommendations. First, we will sketch out a distributed variation on the item-based recommender

approach we have already seen. It will be similar in some ways to the non-distributed item-based

recommender algorithm we have already examined. But it will certainly look different, because the non-

distributed algorithm does not fully translate to the distributed world. Then we will use Hadoop to run

the algorithm.

6.2.1 Constructing a co-occurrence matrix
The algorithm we will use is best explained, and implemented, in terms of simple matrix operations. If

the last time you touched matrices was in a math textbook years ago, don’t worry: the trickiest

operation you’ll need to recall is matrix multiplication. There will be no determinants, row reduction, or

eigenvalues here.

 Recall that the item-based implementations we’ve seen so far rely on an ItemSimilarity

implementation, which provides some notion of the degree of similarity between any pair of items.

Imagine computing a similarity for every pair of items and putting the results into a giant matrix. It

would be a square matrix, with a number of rows and columns equal to the number of items in the data

model. Each row (and each column) would express similarities between one particular item and all other

items. It will be useful to think of these rows and columns as vectors, in fact. It would be symmetric

across the diagonal as well; because the similarity between items X and Y is the same as the similarity

between items Y and X, the entry in row X and column Y would equal the entry in row Y and column X.

We need something like this for the algorithm: a “co-occurrence matrix”. Instead of similarity

between every pair of items, we will instead compute the number of times each pair of items occurs

together in some user’s list of preferences, in order to fill out the matrix. For instance, if there are 9

users who express some preference for both items X and Y, then X and Y co-occur 9 times. Two items

that never appear together in any user’s preferences have a co-occurrence of 0. And, conceptually, each

item co-occurs with itself every time any user expresses a preference for it, though this count will not

be useful.

Co-occurrence is like similarity; the more two items turn up together, the more related or similar

they probably are. So, the co-occurrence matrix plays a role like that of ItemSimilarity in the item-

based algorithm we saw before.

Licensed to nancy chen <amigo4u2009@gmail.com>

91

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 101 102 103 104 105 106 107

101
5 3 4 4 2 2 1

102
3 3 3 2 1 1 0

103
4 3 4 3 1 2 0

104
4 2 3 4 2 2 1

105
2 1 1 2 2 1 1

106
2 1 2 2 1 2 0

107
1 0 0 1 1 0 1

Table 6.1 The co-occurrence matrix for items in simple example data set. The first row and column are
labels and not part of the matrix.

Producing the matrix is a simple matter of counting. Note that the entries in the matrix are not

affected by preference values. These values will enter the computation later. Table 6.1 shows the co-

occurrence matrix for the small example set of preference values that we have been using throughout

the book. As advertised, it is symmetric across the diagonal. There are 7 items, and the matrix is a 7x7

square matrix. The values on the diagonal, it turns out, will not be of use to the algorithm, but they are

included for completeness.

6.2.2 Computing user vectors
The next step in converting our previous recommender approaches to a matrix-based distributed

computation is to conceive of a user’s preferences as a vector. We already did this, in a way, when

discussing the Euclidean-distance-based similarity metric, where users were thought of as points in

space, and similarity based on the distance between them.

 Likewise, in a data model with n items, we can think of user preferences as like a vector over n

dimensions, one dimension for each item. The user’s preference values for items are the values in the

vector. Items that the user expresses no preference for map to a 0 value in the vector. Such a vector is

typically quite sparse, and mostly zeroes, because users typically express a preference for only a small

subset of all items.

For example, in our small example data set, user 3’s preferences correspond to the vector [2.0, 0.0,

0.0, 4.0, 4.5, 0.0, 5.0]. To produce recommendations, we will need such a vector for each user.

6.2.3 Producing the recommendations
To compute recommendations for user 3, we merely multiply this vector, as a column vector, with

the co-occurrence matrix.

Licensed to nancy chen <amigo4u2009@gmail.com>

92

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 101 102 103 104 105 106 107

U3

R

101
5 3 4 4 2 2 1 2.0 40.0

102
3 3 3 2 1 1 0 0.0 18.5

103
4 3 4 3 1 2 0 x 0.0 = 24.5

104
4 2 3 4 2 2 1 4.0 40.0

105
2 1 1 2 2 1 1 4.5 26.0

106
2 1 2 2 1 2 0 0.0 16.5

107
1 0 0 1 1 0 1 5.0 15.5

Table 6.2 Multiplying the co-occurrence matrix with user 3’s preference vector (U3) to produce a vector
that leads to recommendations, R.

Take a moment to review how matrix multiplication works, if needed

(http://en.wikipedia.org/wiki/Matrix_multiplication). The product of the co-occurrence matrix and a user

vector is itself a vector whose dimension is also equal to the number of items. The values in this

resulting vector, R, lead us directly to recommendations: the highest values in R correspond to the best

recommendations.

Table 6.2 shows this multiplication for user 3 and our small example data set, and the resulting

vector R. We will ignore the values in rows of R corresponding to items 101, 104, 105 and 107 because

these are not eligible for recommendation: user 3 already expresses a preference for these items. Of

the remaining items, the entry for item 103 is highest, with value 24.5, and would therefore be the top

recommendation, followed by 102 and 106.

6.2.4 Understanding the results
Let’s pause to understand what happened above. Why do higher values in R correspond to better

recommendations? Computing each entry in R is analogous to computing an estimated preference for

one item, but, why is that value like an estimated preference?

 Recall that computing, for example, the third entry in R entails computing the dot product between

the third row vector of the matrix, and column vector U3. This is the sum of the products of each

corresponding pair of entries in the vectors: 4(2.0) + 3(0.0) + 4(0.0) + 3(4.0) + 1(4.5) + 2(0.0) +

0(5.0) = 24.5

 That third row contains co-occurrences between item 103 and all other items. Intuitively, if item

103 co-occurs with many items that user 3 expresses a preference for, then it is probably something

that user 3 would like. The formula above sums the products of co-occurrences and preference values.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://en.wikipedia.org/wiki/Matrix_multiplication�

93

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

When item 103’s co-occurrences overlap a lot with highly preferred items, the sum contains products of

large co-occurrences and large preference values. That makes the sum larger, which is the value of the

entry in R. This is why larger values in R correspond to good recommendations.

 Note that the values in R do not represent an estimated preference value -- they’re far too large,

for one. These could be normalized into estimated preference values with some additional computation,

if desired. But for our purposes, normalization doesn’t matter, since we are mostly concerned with the

ordering of recommendations, not the exact values on which the ordering depends.

6.2.5 Towards a distributed implementation
This is all very interesting, but what about this algorithm is more suitable for large-scale distributed

implementation? The elements of this algorithm each involve only a subset of all data at any one time.

For example, creating user vectors is merely a matter of collecting all preference values for one user

and constructing a vector. Counting co-occurrences only requires examining one vector at a time.

Computing the resulting recommendation vector only requires loading one row or column of the matrix

at a time. Further, many elements of the computation just rely on collecting related data into one place

efficiently -- for example, creating user vectors from all the individual preference values. The

MapReduce paradigm was designed for computations with exactly these features.

6.3 Implementing a distributed algorithm with Hadoop
Now that we’ve sketched the algorithm, we can translate it into a form that can be implemented with

MapReduce and Hadoop. Hadoop, as we’ve noted, is a popular distributed computing framework that

includes two components of interest: a distributed file system, HDFS, and an implementation of the

MapReduce paradigm.

For purposes of this chapter, we will use the Hadoop APIs found in version 0.19.x of the framework.

The code presented below can be found in its complete form within Mahout, and should be runnable

with Hadoop 0.19.x or 0.20.x. It may not work with later versions, as these APIs are being phased out.

6.3.1 Introducing MapReduce
MapReduce is a way of thinking about and structuring computations in a way that makes them

amenable to distributing over many machines. The shape of a MapReduce computation is as follows:

1. Input is assembled in the form of many key-value (K1,V1) pairs, typically as input files on an

HDFS instance

2. A “map” function is applied to each (K1,V1) pair, which results in zero or more key-value pairs of
a different kind (K2,V2)

3. All V2 for each K2 are combined

4. A “reduce” function is called for each K2 and all its associated V2, which results in zero or more
key-value pairs of yet a different kind (K3,V3), output back to HDFS

This may sound like an odd pattern for a computation. As it happens, many problems can be fit into

this structure, or a series of them chained together. Problems framed in this way may then be efficiently

distributed with Hadoop and HDFS.

Licensed to nancy chen <amigo4u2009@gmail.com>

94

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

6.3.2 Translating to MapReduce: Generating user vectors
In our case, the computation begins with the unarchived links data file as input. It lines are not of the

form “userID,itemID,preference” that we have worked with in the past. Instead they are of the form

“userID: itemID1 itemID2 itemID3 …”. This file is placed onto an HDFS instance in order to be available

to Hadoop -- more on how this is done a few sections later.

The first MapReduce we use to implement this will construct user vectors:

1. Input files are treated as (Long,String) pairs by the framework, where the Long key is a
position in the file and String value is the line of the text file.

2. Each line is parsed into user ID and several item IDs by a map function. The function emits new
key-value pairs: user ID mapped to item ID, for each item ID

3. The framework collects all item IDs that were mapped to each user ID together.

4. A reduce function constructors a Vector from all item IDs for the user, and outputs the user ID
mapped to the user’s preference vector. All values in this vector are 0 or 1.

An implementation of this idea may be found in Listing 6.1 and Listing 6.2, below, as an

implementation of both Hadoop’s MapReduce Mapper and Reducer interfaces. This is typical of

MapReduce computations, to have an implementation consist of a related pair of classes like this. These

are all we need to implement the process above; Hadoop will take care of the rest.

Listing 6.1 Mapper which parses Wikipedia link file into ItemPrefWritables for each user
public class WikipediaToItemPrefsMapper extends MapReduceBase implements
 Mapper<LongWritable,Text,VLongWritable,VLongWritable> {

 public void map(LongWritable key,
 Text value,
 OutputCollector<VLongWritable,VLongWritable> output,
 Reporter reporter) throws IOException {
 Matcher m = Pattern.compile("(\\d+)").matcher(value.toString());
 m.find(); A
 VLongWritable userID = new VLongWritable(Long.parseLong(m.group()));
 VLongWritable itemID = new VLongWritable();
 while (m.find()) {
 itemID.set(Long.parseLong(m.group()));
 output.collect(userID, itemID); B
 }
 }
}

A Locate user ID
B Emit user / item pair for each item ID

Listing 6.2 Reducer which produces Vectors from a user’s item preferences
public class ToUserVectorReducer extends MapReduceBase implements
 Reducer<VLongWritable,VLongWritable,VLongWritable,VectorWritable> {

 public void reduce(VLongWritable userID,

Licensed to nancy chen <amigo4u2009@gmail.com>

95

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 Iterator<VLongWritable> itemPrefs,
 OutputCollector<VLongWritable,VectorWritable> output,
 Reporter reporter) throws IOException {
 Vector userVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100); B
 while (itemPrefs.hasNext()) {A
 VLongWritable itemPref = itemPrefs.next();
 userVector.set(itemPref.get(), 1.0f); C
 }
 output.collect(userID, new VectorWritable(userVector));
 }
}

A Iterate over all item-preference pairs for a user
B Create an empty, reasonably-sized sparse vector
C Set dimension “item ID” to item’s preference value

These are simplified versions of the real implementation in Mahout, for illustration. They do not

include optimizations and configuration options, but they would run and produce usable output.

6.3.3 Translating to MapReduce: Calculating co-occurrence
The next phase of the computation is another MapReduce that uses the output of the first MapReduce to

compute co-occurrences.

1. Input is user IDs mapped to Vectors of user preferences -- the output of the last MapReduce.

2. The map function determines all co-occurrences from one user’s preferences, and emits one

pair of item IDs for each co-occurrence -- item ID mapped to item ID and a count of 1. Both
mappings, from one item ID to the other and vice versa, are recorded.

3. The framework collects, for each item, all co-occurrences mapped from that item.

4. The reducer tallies up all counts, for each item ID, all co-occurrences that it receives and

constructs a new Vector, which represents all co-occurrences for one item with count of number

of times they have co-occurred. These can be used as the rows -- or columns -- of the co-
occurrence matrix.

The output of this phase is in fact the co-occurrence matrix. Again, Listing 6.3 and Listing 6.4

provide a simplified look at how this is implemented in Mahout on top of Hadoop. Again we have a pair

of related implementations, of Mapper and Reducer.

Listing 6.3 Mapper component of co-occurrence computation
public class UserVectorToCooccurrenceMapper extends MapReduceBase
 implements Mapper<VLongWritable,RandomAccessSparseVectorWritable,
 IntWritable,EntityCountWritable> {

 public void map(VLongWritable userID,
 RandomAccessSparseVectorWritable userVector,
 OutputCollector<IntWritable,EntityCountWritable> output,
 Reporter reporter) throws IOException {
 Iterator<Vector.Element> it = userVector.get().iterateNonZero(); A
 IndexIndexWritable entityEntity = new IndexIndexWritable();

Licensed to nancy chen <amigo4u2009@gmail.com>

96

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 IntWritable one = new IntWritable(1);
 while (it.hasNext()) {
 int index1 = it.next().index();
 Iterator<Vector.Element> it2 = userVector.iterateNonZero();
 while (it2.hasNext()) {
 int index2 = it2.next().index();
 if (index1 != index2) {
 entityEntity.set(index1, index2);
 output.collect(entityEntity, one); B
 }
 }
 }
 }

A Only necessary to iterate over the non-zero elements
B Record count of 1

Listing 6.4 Reducer component of co-occurrence computation
public class UserVectorToCooccurrenceReducer extends MapReduceBase implements
 Reducer<IndexIndexWritable,IntWritable,IntWritable,VectorWritable> {

 private int lastItem1ID = Integer.MIN_VALUE;
 private int lastItem2ID = Integer.MIN_VALUE;
 private Vector cooccurrenceRow = null;
 private int count = 0;

 public void reduce(IndexIndexWritable entityEntity,
 Iterator<IntWritable> counts,
 OutputCollector<IntWritable,VectorWritable> output,
 Reporter reporter) throws IOException {

 int item1ID = entityEntity.getAID();
 int item2ID = entityEntity.getBID();
 if (item1ID == lastItem1ID) {
 if (item2ID == lastItem2ID) {
 count += CooccurrenceCombiner.sum(counts); A
 } else {
 if (cooccurrenceRow == null) {
 cooccurrenceRow = new RandomAccessSparseVector(Integer.MAX_VALUE);
 }
 cooccurrenceRow.set(item2ID, count); B
 lastItem2ID = item2ID;
 count = CooccurrenceCombiner.sum(counts);
 }
 } else {
 if (cooccurrenceRow != null) {
 output.collect(new IntWritable(lastItem1ID),
 new VectorWritable(cooccurrenceRow)); C
 }
 lastItem1ID = item1ID;
 lastItem2ID = item2ID;
 cooccurrenceRow = null;
 count = CooccurrenceCombiner.sum(counts);
 }
 }
}

Licensed to nancy chen <amigo4u2009@gmail.com>

97

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

A Accumulate counts for item 1 / 2
B Record counts for item 1 / 2
C Done, record entire item 1 vector

 Above in the mapper, note how we output two item IDs and a count of “1” every time two items co-

occur. That may seem redundant, and it is. However, it’s done to enable an optimization in Hadoop

known as a combiner. A combiner is like a mini-reduce phase that runs after a mapper. It can combine

multiple map outputs into one that represents the same information, before storing and sending to

reducers. For example, imagine items 123 and 456 co-occur ten times. Normally, the map phase would

output ten EntityCountWritables, each recording that 123 and 456 co-occurred once. The combiner

can combine these ten records into one, with count 10.

 This useful detail is not applicable in all situations, but is perfect for this situation. It is implemented

in Mahout, and can be seen in the source code, for the interested. With the co-occurrence matrix in

hand, we can proceed to the final computation of recommendations.

6.3.4 Translating to MapReduce: Rethinking matrix multiplication
We are ready to use MapReduce to multiply the user vectors computed in step 1, and the co-occurrence

matrix from step 2, to produce a recommendation vector from which we may derive recommendations.

 However we will perform the multiplication in a different way that is more efficient here, and more

naturally fits the shape of a MapReduce computation. We will not perform conventional matrix

multiplication, wherein each row is multiplied against the user vector (as a column vector), to produce

one element in the result R:

for each row i in the co-occurrence matrix
 compute dot product of row vector i with the user vector
 assign dot product to ith element of R

Why depart from the algorithm we all learned in school? The reason is purely performance, and this

is a good opportunity to examine the kind of thinking necessary to achieve performance at scale when

designing large matrix and vector operations. The conventional algorithm necessarily touches the entire

co-occurrence matrix, since it needs to perform a vector dot product with each row. Anything that

touches the entire input is “bad” here since the input may be staggeringly large and not even available

locally. Instead, we note that matrix multiplication can be accomplished as a function of the co-

occurrence matrix columns:

assign R to be the zero vector
for each column i in the co-occurrence matrix
 multiply column vector i by the ith element of the user vector
 add this vector to R

Take a moment to convince yourself that this is also a correct way to define this matrix

multiplication, with a small example perhaps. So far, this isn’t an improvement: it also touches the

entire co-occurrence matrix, by column.

However, note that wherever element i of the user vector is 0, we can skip the loop iteration

entirely, because the product will just be the zero vector and does not affect the result. So, this loop

Licensed to nancy chen <amigo4u2009@gmail.com>

98

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

need only execute for each non-zero element of the user vector. The number of columns loaded will be

equal to the number of preferences that the user expresses, which is far smaller than the total number

of columns.

And, expressed this way, we can distribute the computation efficiently. Column vector i can be

output along with all elements it needs to be multiplied against. The products can be computed and

saved independently of handling of all other column vectors.

6.3.5 Translating to MapReduce: Matrix multiplication by partial products
We already have the columns of the co-occurrence matrix from an earlier step. Because the matrix is

symmetric, the rows and columns are identical, so we can use this output as either rows or columns,

conceptually. These columns are keyed by item ID. We must multiply each by every non-zero

preference value for that item, across all user vectors. That is, we need to map item IDs to a user ID

and preference value, and then collect them together in a reducer. After multiplying the co-occurrence

column by each value, we have a vector that forms part of the final recommender vector R for one user.

The difficult part here is that we want to combine two different kinds of data in one computation: co-

occurrence column vectors, and user preference values. This isn’t by nature possible in Hadoop, since

values in a reducer can be of one Writable type only. We can get around this by crafting Writable

that contains either one or the other type of data: a VectorOrPrefWritable. While it may be viewed

as a hack, it may be valuable or necessary in designing a distributed computation to bend some rules to

achieve an elegant, efficient computation.

So, the mapper phase here will actually contain two mappers, each producing different types of

reducer input:

5. Input for mapper 1 is the co-occurrence matrix: item IDs as keys, mapped to columns as

Vectors.

6. The map function simply echoes its input, but with the Vector wrapped in a
VectorOrPrefWritable.

7. Input for mapper 2 is again the user vectors: user IDs as keys, mapped to preference Vectors

8. For each non-zero value in the user vector, the map function outputs item ID mapped to the user

ID and preference value (here, all non-zero values are 1), wrapped in a
VectorOrPrefWritable

9. The framework collects together, by item ID, the co-occurrence column and all user ID /
preference value pairs.

10. The reducer unpacks this input and performs all multiplications with the co-occurrence column

vector. (Here, since values are 1, we can skip the multiplication.) For each user ID pair, it outputs
as a Vector the product, which is part of the user’s recommendation vector R.

Listing 6.5 Wrapping co-occurrence columns

Licensed to nancy chen <amigo4u2009@gmail.com>

99

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

public class CooccurrenceColumnWrapperMapper extends MapReduceBase
 implements Mapper<IntWritable,VectorWritable,
 IntWritable,VectorOrPrefWritable> {

 public void map(IntWritable key,
 VectorWritable value,
 OutputCollector<IntWritable,VectorOrPrefWritable> output,
 Reporter reporter) throws IOException {
 output.collect(key, new VectorOrPrefWritable(value.get()));
 }
}

Listing 6.5 shows the co-occurrence columns being simply wrapped in VectorOrPrefWritable.

Listing 6.6 Splitting user vectors
public class UserVectorSplitterMapper extends MapReduceBase
 implements Mapper<VLongWritable,VectorWritable,
 IntWritable,VectorOrPrefWritable> {

 public void map(VLongWritable key,
 VectorWritable value,
 OutputCollector<IntWritable,VectorOrPrefWritable> output,
 Reporter reporter) throws IOException {
 long userID = key.get();
 Vector userVector = value.get();
 Iterator<Vector.Element> it = userVector.iterateNonZero();
 while (it.hasNext()) {
 Vector.Element e = it.next();
 int itemIndex = e.index();
 float preferenceValue = (float) e.get();
 itemIndexWritable.set(itemIndex);
 output.collect(new IntWritable(itemIndex),
 new VectorOrPrefWritable(userID, preferenceValue));
 }
 }
}

In Listing 6.6, user vectors are “split” into their individual preference values, and output, mapped by

item ID rather than user ID.

Listing 6.7 Computing partial recommendation vectors

public class PartialMultiplyReducer extends MapReduceBase implements
 Reducer<IntWritable,VectorOrPrefWritable,VLongWritable,VectorWritable> {

 public void reduce(IntWritable key,
 Iterator<VectorOrPrefWritable> values,
 final OutputCollector<VLongWritable,VectorWritable> output,
 Reporter reporter) throws IOException {

 OpenLongFloatHashMap savedValues = new OpenLongFloatHashMap();
 Vector cooccurrenceColumn = null;
 final int itemIndex = key.get();

Licensed to nancy chen <amigo4u2009@gmail.com>

100

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 final VLongWritable userIDWritable = new VLongWritable();
 final VectorWritable vectorWritable = new VectorWritable();
 vectorWritable.setWritesLaxPrecision(true);

 while (values.hasNext()) {

 VectorOrPrefWritable value = values.next();
 if (value.getVector() == null) {

 long userID = value.getUserID(); A
 float preferenceValue = value.getValue();

 if (cooccurrenceColumn == null) { B
 savedValues.put(userID, preferenceValue);
 } else { C
 Vector partialProduct = cooccurrenceColumn; D
 partialProduct.set(itemIndex, Double.NEGATIVE_INFINITY); E
 userIDWritable.set(userID);
 vectorWritable.set(partialProduct);
 output.collect(userIDWritable, vectorWritable);
 }

 } else {

 cooccurrenceColumn = value.getVector(); F

 final Vector theColumn = cooccurrenceColumn;
 savedValues.forEachPair(new LongFloatProcedure() {
 public boolean apply(long userID, float value) {
 Vector partialProduct = theColumn.times(value);
 partialProduct.set(itemIndex, Double.NEGATIVE_INFINITY);
 userIDWritable.set(userID);
 vectorWritable.set(partialProduct);
 try {
 output.collect(userIDWritable, vectorWritable); G
 } catch (IOException ioe) {
 throw new IllegalStateException(ioe);
 }
 return true;
 }
 });
 savedValues.clear();
 }
 }

 }
}

A Then it’s a user ID / preference
B Co-occurrence column vector not yet seen
C Have column vector so multiply
D Normally, multiply by preference value
E Makes sure the item isn’t recommended
F Found the column vector
G Output product for all saved values

Licensed to nancy chen <amigo4u2009@gmail.com>

101

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Most of the complexity of listing 6.7, which shows the output of the two previous mappers being

multiplied, comes from the fact that it’s not known which value will contain the co-occurrence vector.

Until it’s seen, the user IDs and preference values must be stored temporarily for later multiplication

with the vector, once it appears.

6.3.6 Translating to MapReduce: Making recommendations
At last, we just need to assemble the pieces of the recommendation vector for each user and make

recommendations. Listing 6.8 shows this in action.

11. The input for the mapper is the output of the previous step: user IDs as keys mapped to a part of

that user’s recommendation vector, as a Vector.

12. The mapper merely passes through these keys and values.

13. The framework collects all of the partial vectors for each user ID.

14. The reducer sums all partial vectors for a user ID to produce that user’s recommendation vector.
The highest values in the vector are the best recommendations and are output.

Listing 6.8 Producing recommendations from vector
public class AggregateAndRecommendReducer extends MapReduceBase
 implements Reducer<VLongWritable,VectorWritable,
 VLongWritable,RecommendedItemsWritable> {

 public void reduce(VLongWritable key,
 Iterator<VectorWritable> values,
 OutputCollector<VLongWritable,
 RecommendedItemsWritable> output,
 Reporter reporter) throws IOException {
 Vector recommendationVector = values.next().get();
 while (values.hasNext()) { A
 recommendationVector = recommendationVector.plus(values.next().get());
 }

 Queue<RecommendedItem> topItems =
 new PriorityQueue<RecommendedItem>(10,
 Collections.reverseOrder(
 ByValueRecommendedItemComparator.getInstance())); B

 Iterator<Vector.Element> recommendationVectorIterator =
 recommendationVector.iterateNonZero();
 while (recommendationVectorIterator.hasNext()) {
 Vector.Element element = recommendationVectorIterator.next();
 int index = element.index();
 if (topItems.size() < 10) {
 long theItemID = indexItemIDMap.get(index);
 topItems.add(new GenericRecommendedItem(
 theItemID, (float) element.get()));
 } else if (element.get() > topItems.peek().getValue()) {
 long theItemID = indexItemIDMap.get(index);
 topItems.add(new GenericRecommendedItem(
 theItemID, (float) element.get()));
 topItems.poll();

Licensed to nancy chen <amigo4u2009@gmail.com>

102

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 }
 }

 List<RecommendedItem> recommendations =
 new ArrayList<RecommendedItem>(topItems.size());
 recommendations.addAll(topItems);
 Collections.sort(recommendations,
 ByValueRecommendedItemComparator.getInstance()); C
 output.collect(key, new RecommendedItemsWritable(recommendations));
 }
}

A Build the recommendation vector by summing
B Find the top 10 highest values
C Output recommendations in order

The output ultimately exists as one or more files stored on an HDFS instance, as a compressed text

file; the lines in the text file are of the form:

3 [103:24.5,102:16.5,106:16.5]

Each user ID is followed by a comma-delimited list of item IDs that have been recommended

(followed by a colon and the corresponding entry in the recommendation vector, for what it is worth).

This output can be retrieved from HDFS, parsed, and used in an application. Note that the output from

Mahout will be compressed, to save space, using gzip.

6.4 Running MapReduces with Hadoop
Now we’re ready to try out this implementation on the Wikipedia links data set. Although Hadoop is a

framework for running a computation across clusters of potentially thousands of machines, we will start

by showing how to run a Hadoop computation on a cluster of one machine: yours.

6.4.1 Setting up Hadoop
As mentioned in the opening chapter, you will need to download a recent of copy of Hadoop from

http://hadoop.apache.org/common/releases.html. Version 0.20.x is most recent and recommended at

the time of this writing. Follow the setup directions at

http://hadoop.apache.org/common/docs/current/quickstart.html and configure for what it calls “pseudo-

distributed” operation. Before running the Hadoop daemons with bin/start-all.sh, make one

additional change: in conf/mapred-site.xml, add a new property named “mapred.child.java.opts”

with value “-Xmx1024m”. This will enable Hadoop workers to use up to 1GB of heap memory. You can

stop following the setup instructions after running all the Hadoop daemons.

You are now running a complete Hadoop cluster on your local machine, including an instance of the

HDFS distributed file system. We need to put the input onto HDFS to make it available to Hadoop. You

may wonder why, if the data is readily available on the local file system, it needs to be copied again into

HDFS. Recall that in general, Hadoop is a framework run across many machines, so, any data it uses

needs to be available not to one machine but many. HDFS is an entity that can make data available to

these many machines. Copy the input to HDFS with “bin/hadoop fs -put links-simple-
sorted.txt input/input.txt”.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://hadoop.apache.org/common/releases.html�
http://hadoop.apache.org/common/docs/current/quickstart.html�

103

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Computing recommendations for every article in the data set would take a long time, because we are

running on only one machine and incurring all the overhead of the distributed computing framework. We

can ask the implementation in Mahout to compute recommendation for, say, just one user. Create a file

containing only the number “3” on a single line. Save it as users.txt. This is a list of the articles for

which we will generate recommendations -- here, one, for testing purposes. Place in into HDFS as well

with “bin/hadoop fs -put users.txt input/users.txt”.

6.4.2 Running recommendations with Hadoop
The glue that binds together the various Mapper and Reducer components we’ve seen so far is

org.apache.mahout.cf.taste.hadoop.item.RecommenderJob. It can be found within the

Mahout source distribution. It configures and invokes the series of MapReduce jobs we have discussed.

Figure 6.2 The relation between RecommenderJob, the three MapReduces it invokes, and the data that they read to
and write from HDFS

In order to run it, and allow Hadoop to run these jobs, we need to compile all of this code into one

.jar file along with all of the code it depends upon. This can be accomplished easily by running “mvn

Licensed to nancy chen <amigo4u2009@gmail.com>

104

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

clean package” from the core/ directory in the Mahout distribution. This will produce a file like

target/mahout-core-0.x-SNAPSHOT.job, which is in reality a .jar file.

Now, kick it all off with:

bin/hadoop jar target/mahout-core-0.x-SNAPSHOT.job
 org.apache.mahout.cf.taste.hadoop.item.RecommenderJob
 -Dmapred.input.dir=input/input.txt
 -Dmapred.output.dir=output --usersFile input/users.txt --booleanData

Hadoop will take over and begin running the series of jobs. It will take many hours, because only

one machine (yours) is being deployed to complete the computations. Even with a small army of

machines, don’t expect results in minutes; the overhead of initializing the cluster, distributing the data

and executable code, and marshalling the results, is non-trivial. If you are patient enough to let it

complete, you should find the results on HDFS under the output/ directory. It will be contained in a

single file called part-00000.

 Copy the result back to your local file system with “bin/hadoop fs -get output/part-
00000”. This can be examined and used as desired. Congratulations, that’s it, you’ve produced

recommendations with a fully distributed framework (on a cluster of one machine). Don’t forget to shut

down Hadoop with “bin/stop-all.sh” when done.

6.4.3 Configuring mappers and reducers
One important point deserves mention here. Above, we let Hadoop default to running just one map

and one reduce worker at once. This is appropriate since we’re running on just one machine. In general,

when launching this job on a cluster of many machines, one worker is of course too little. On a real

cluster, this can be controlled with command-line arguments like “-Dmapred.map.tasks=X -
Dmapred.reduce.tasks=Y”. Setting both equal to the total number of cores available in the cluster is

a good place to start. For example, if your cluster has five quad-core machines, set both to 20.

6.5 Pseudo-distributing a Recommender
Earlier, we saw how to create, test and operate a variety of non-distributed recommender engines with

Mahout, on one machine. In this chapter, we saw how to run one fully distributed recommender

computation using a quite different approach. There is a middle ground, however, for applications that

want to use multiple machines, but want to use an existing non-distributed implementation.

 This might be the case for applications that have already developed a customized, effective

implementation using the non-distributed framework. Such a Recommender implementation is likely, as

with all the non-distributed implementations we’ve seen, intimately bound to a DataModel to do its

work, and assumes efficient, random access to all available data. It might be hard or impossible to

reinvent it in a fully distributed form.

 For these situations, Mahout offers a “pseudo-distributed” recommender engine framework. It is

merely a Hadoop-based harness that can run several independent, non-distributed instances of a given

recommender engine in parallel. As such, it is an easy way to “port” a stock, non-distributed algorithm

to use many machines. This facility does not actually parallelize the computation in any sense; it only

manages operation of multiple non-distributed instances. Performance is the same as when running a

non-distributed instance directly. However this allows you to run n instances of the recommender, on n

Licensed to nancy chen <amigo4u2009@gmail.com>

105

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

machines, each producing 1/n of all the recommendations required, in a total of 1/n the time it would

take one machine to finish.

 The disadvantage to this approach is a scalability limitation: a non-distributed computation remains

limited in the amount of data it can handle by the resources of the machine(s) that it runs on. That is, a

computation that can’t fit on one large machine still won’t fit when sent to n independent large

machines. Pseudo-distributing the computation does not change this.

6.5.1 Running a pseudo-distributed Recommender on Hadoop
There are no new algorithms or code to introduce here; the pseudo-distributed recommender engine

framework in Mahout runs the Recommenders we’ve already seen, but on Hadoop. Conceptually, it uses

Hadoop to split the set of users across n machines, copy the input data to each, and then run one

Recommender on each machine to process recommendations for a subset of users.

The process is the same as before. With Hadoop set up and running, copy the preferences input file

into HDFS. If you wish to try out this framework, choose the input from a data set we have studied

already, such as ua.base from the GroupLens 100K data set. (The Wikipedia links data set will be too

large to use with a non-distributed implementation.) Place ua.base into HDFS under, for example,

input/ua.base.

We will need to give the framework the name of a Recommender implementation that it can

instantiate and use. The only requirement is that the implementation provides a constructor that takes a

single argument, a DataModel. With this, the framework can do the rest. Typically, you would supply a

customized Recommender that you had created for your application here; for testing purposes,

SlopeOneRecommender will do because it can be instantiated with only a DataModel as configuration.

Create mahout.jar as above. As it happens, this .jar file already contains

SlopeOneRecommender, because it is a standard Mahout implementation. However, were you to use

your own implementation, you would need to add it and any of its dependent classes into the .jar file as

well. This can be accomplished with “jar uf mahout.jar -C [classes directory]”, where the

classes directory is the location where your IDE or build tool output the compiled version of your code.

Finally, run the job:

bin/hadoop jar target/mahout-core-0.x-SNAPSHOT.job
 org.apache.mahout.cf.taste.hadoop.pseudo.RecommenderJob
 -Dmapred.input.dir=input/ua.base
 -Dmapred.output.dir=output
 --recommenderClassName
 org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommender

As before, you will find the output in HDFS in the output/ directory. That’s all there is to it; if your

input is of such a scale that truly distributed algorithms are not required, then the pseudo-distributed

recommender framework is a quick and easy way to utilize more computing power to produce

recommendations faster.

6.6 Looking beyond first steps with recommendations
The portion of Mahout’s recommendation engine introduced in this chapter is, as we go to press, still

quite under construction, so refer to the latest documentation and code in conjunction with this

reference book. The techniques described above are also by no means the best or only way to distribute

Licensed to nancy chen <amigo4u2009@gmail.com>

106

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

a recommender computation; they are merely the first that the framework provides. Look to Mahout to

provide more options as it evolves. On that note, we conclude with some thoughts about where to go

next from here in your thinking and investigation of recommender engines.

6.6.1 Running in the cloud
Don’t have a hundred machines lying around on which to run these big distributed computations?

Fortunately, today, service providers allow you to rent storage and computing time from a computing

cloud.

Figure 6.3 Amazon’s AWS Elastic MapReduce console

Amazon’s Elastic MapReduce service (http://aws.amazon.com/elasticmapreduce/) is one such

service. It uses Amazon’s S3 storage service instead of a pure HDFS instance for storing data in the

cloud. After uploading your .jar file and data to S3, you can invoke a distributed computation using

their AWS Console by supplying the same arguments we used to invoke the computation on the

command line earlier.

After logging in to the main AWS Console, select the Amazon Elastic MapReduce tab. Choose to

“Create New Job Flow”. Give the new flow whatever name you like and specify “Run your own

application”. Choose the “Custom jar” type and continue. Specify the location on S3 where the .jar file

resides; this will be an s3: URI, not unlike “s3://my-bucket/target/mahout-core-0.x-
SNAPSHOT.job”.

The job arguments will be the same as when running on the command line; here it will certainly be

necessary to configure the number of mappers and reducers. The number of mappers and reducers can

be tuned to your liking; as above, we recommend starting with a number equal to the number of virtual

cores you reserve for the computation. While any instance type can be used, we recommend starting

with the “regular” types unless there is reason to choose something else: small, large or extra-large.

The number and type of instances is selected on the next AWS Console screen.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://aws.amazon.com/elasticmapreduce/�

107

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

If your input data is extremely large, some recommender jobs such as that in

org.apache.mahout.cf.taste.hadoop.item may need a more RAM per mapper or reducer. In

this case you may have to choose a high-memory instance type. You may also opt for a high-CPU

instance type; the risk is that the jobs will spend enough time reading and writing data to S3 that these

instances’ speedy CPUs will go mostly unused. Therefore the conventional instance types are a good

place to start. If using the “small” instance type, which has 1 virtual core per instance, then simply set

the number of mappers and reducers equal to the number of instances you will select.

You may leave other options untouched unless you have reason to set them. This is the essence of

running a recommender job on Elastic MapReduce; refer to Amazon’s documentation for more

information about how to monitor, stop, and debug such jobs. While Amazon AWS uses Hadoop version

0.18.3 at the time of this writing, it should still be compatible with Mahout-related Hadoop code, even

though Mahout is developed against version 0.20.x.

6.6.2 Imagining unconventional uses of recommendations
Although the Mahout recommender engine APIs are phrased in terms of “users” and “items”, the

framework does not actually assume that users are people and items are objects like books and DVDs.

We already applied recommender engines to a dating site’s data to recommend people to people for

example. What other ways can recommender engines be applied? We provide some ideas to fire your

imagination:

 Recommend users to items: By simply swapping item IDs for user IDs, a recommender engine’s

output instead suggests which users might be most interested in a given item.

 Think broadly about “items”: given associations from users to places, times, usage patterns, or
other people, you can recommend the same back to them.

 Find most similar items. Item-based recommender implementations in Mahout make it easy to
find a set of most similar items, which could be useful to present to users as well.

 Think broadly about preference values. It’s unusual to be able to collect explicit preference values

from users. Think about what you can infer from the data you do have about users’ relations to
things.

 Think about more than just one “user” and “item”: you can recommend to pairs of users by

thinking of a pair of users as a “user”. You can recommend, say, an item and place by taking
both of them together as an “item”.

Mahout does not offer particular, special support for these use cases, though all can be implemented

on top of Mahout. This is a possible direction in which Mahout could grow, or in which specialized third-

party projects might appear. In particular, the problem of inferring implicit ratings based on user

behavior and other data is a fascinating and important problem in its own right, but not one that Mahout

addresses.

Licensed to nancy chen <amigo4u2009@gmail.com>

108

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

6.7 Summary
In this chapter, we took a brief look at the large data set based on Wikipedia article links. With 130M

“preferences”, it is large enough to require a different, distributed approach to produce

recommendations.

We discussed the tradeoffs inherent in moving from one machine and a non-distributed algorithm to

a large distributed computation on a cluster of machines. Then we briefly introduced the MapReduce

paradigm and its implementation in Hadoop as a way to manage such distributed computations.

We translated the item-based recommender algorithm we saw before into a different distributed

implementation, which relies on matrix and vector operations to discover the best recommendations.

We returned to the Wikipedia data set, prepared it for use with Hadoop, and walked through creating

recommendations for this data set on a local Hadoop and HDFS instance.

Finally, we examined pseudo-distributed recommender computations with Mahout: running several

independent instances of non-distributed Recommender implementations on Hadoop.

This concludes the coverage of recommender engines in Mahout. It has been intended as a gentle

introduction to one aspect of machine learning, which gradually evolved from small input and non-

distributed computation to large-scale distributed computation. Now, we move to discuss clustering and

classification with Mahout, which entails more complex machine learning theory and more intense use of

distributed computing. With recommender engines under your belt, you’re ready to engage these topics.

Read on.

Licensed to nancy chen <amigo4u2009@gmail.com>

109

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

7
Introduction to Clustering

This chapter covers:

 A hands-on look at Clustering in action

 Understanding the notion of similarity

 Running a simple clustering example in Mahout

 The various distance measures used for clustering

Birds of a feather flock together. As human beings, we tend to associate with like-minded people. We

have a great mental ability for finding repeating patterns, and we continually associate what we see,

hear, smell or taste to things that are already in our memory. For example, the taste of honey reminds

us more of the taste of sugar than salt. So we group together the things that taste like sugar and honey

and call them “sweet”. Without even knowing what “sweet” tastes like, we know that all the sugary

things in the world are similar and of the same group. However, we know how different they are from all

the things belonging to the salty group. Unconsciously, we group together tastes into such “clusters”.

So, in nature we have clusters of sugary things and salty things, with each group having hundreds of

items in it.

In nature, we observe many other types of groups. Consider apes versus monkeys, which are both

kinds of primates. All monkeys share some traits like short height, long tail, and flat nose. On the other

hand, apes are characterized by their large size, long arms, and bigger head. Apes look different from

monkeys, but both are fond of bananas. So it is entirely up to us to think of apes and monkeys as two

different groups, or as a single group of banana-loving primates. Therefore, what we consider as a

cluster entirely depends on the traits we choose for measuring the similarity between items (in this

case, primates).

So what is the process of clustering all about? Suppose you were given the keys to a library

containing thousands of books. However, in this library the books are arranged in no particular order.

Readers entering your library would have to sweep through all the books one by one to find a particular

one. Not only is this cumbersome, and slow, but tedious as well.

Licensed to nancy chen <amigo4u2009@gmail.com>

110

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Sorting the books alphabetically by title would be a vast improvement -- for readers searching for a

book by title, that is. What if most people were simply browsing, or researching a general subject? A

grouping of the books by topics would more useful than an alphabetical ordering.

How would you even begin this grouping? Having just taken over this job, you aren’t even sure what

all the books are about -- surfing, romance, or even topics you haven’t encountered before? To group

the books by topic, you could lay down all the books in a line and start reading them one by one. When

you encounter a book whose content is similar to a previous book, you could go back and stack them

together. At the end, you would have some hundreds of stacks of books instead of thousands.

Good work -- this was your first clustering experiene. If a hundred topic groups were too large, you

could go back to the beginning of the line and repeat the process with stacks until you got stacks that

start looking quite different from one another.

7.1 What is clustering?
Clustering is all about organizing similar items into groups from a given collection of items. These

clusters could be thought of as a set of items similar to each other in some ways but dissimilar from the

items belonging to other clusters. Clustering a collection involves:

 an algorithm, the method used to group the books together

 a notion of both similarity and dissimilarity -- above we relied on your assessment of which books
belonged in an existing stack and which should start a new one

 a stopping condition. In the librarian example, this might have been the point beyond books can’t
be stacked anymore, or when the stacks are already quite dissimilar.

Until now we have thought of clustering items as stacking them. Really, we were just grouping them.

Conceptually, clustering is more like looking at which items form “near” groups and just circling them.

Take look at Figure 7.1. The figure shows clustering of points in a standard X-Y plane. Each circle

represents one cluster, containing several points. In this simple example, this is obviously the best

clustering of points into 3 clusters based on distance. Circles are good way to think of clusters, since

clusters are also defined by a center point and radius. The center of the circle is called the centroid, or

mean (average), of that cluster. It is the point whose coordinates are the average of the x and y

coordinates of all points in the cluster.

In later chapters, we will explore some of the methods that are popularly used for clustering data –

and the way they are implemented in software in Mahout. The strategy in the librarian examples was to

merge stacks of books until some threshold was reached. The number of clusters formed in this case

depended on the data -- based on the number of books and threshold, we might have ended up with

100, 20, or even just 1 cluster. A more popular strategy is to set a target number of clusters, instead of

a threshold, and then find the best grouping with that constraint. Later we wille explain this and other

variations in detail.

Licensed to nancy chen <amigo4u2009@gmail.com>

111

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 7.1 Points in an x-y plane. Circles represent the clusters. The points on the plane could be viewed as 3 logical
groups. Clustering algorithms helps surface those groups to you.

7.2 Measuring the similarity of Items
The most important issue in clustering is finding a function that quantifies the similarity between any

two data points as a number. Note that we are using the terms “item” and “point” interchangeably in

this whole book. Both refer to a unit of data we wish to cluster.

In the X-Y plane example, the measure of similarity (or “similarity metric”) for the points was the

Euclidean distance between two points. The librarian example had no such clear, mathematical measure

and instead relied entirely on the wisdom of the librarian to judge book similarity. That surely doesn’t

work for us, since we need a metric that can be implemented on a computer.

One possible metric could be based on the number of words common to two books’ titles. So “Harry

Potter: The Philosopher’s Stone” and “Harry Potter: The Prisoner of Azkaban” have three words in

common: “Harry”, “Potter” and “The”. But, even though the book “The Lord of the Rings: The Two

Towers” is similar to the Harry Potter series, this measure of similarity doesn’t capture that. We should

alter the similarity measure to take account of the contents of the book itself. We could assemble word

counts for each book, and when the counts are close for many words, judge the books similar.

Unfortunately, that is easier said than done. Not only do these books have hundreds of pages of

text, but this sort of measure is confounded by features of English. The most frequent words in these

English-language texts are words like “a”, “an”, and “the” which invariably occur frequently in both

books, but say little about the book similarity.

To combat this effect, we could use numeric weights in the computation, and apply low weights to

these words to reduce their effect on the similarity value. We should give less weight to words that

occur across many books, and more weight to words that are found in few books. We should also weight

Licensed to nancy chen <amigo4u2009@gmail.com>

112

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

words occurring more often in a particular book because those words strongly suggest the content of

the books – like “magic” in the case of Harry Potter

Once we give a weight value to each word in a book, we can say the similarity between two books is

the sum over all words of the similarity of those two words’ counts in the two books times their

weighting. This is a decent measure, if the books are of equal length. What if one book is 300 pages

long and the other 1000 pages long? Surely, the larger book will have a larger count of words, in

general. We have to ensure that the weight of words should be relative to the length of the text. A

popular method called Tf-Idf (term frequency - inverse document frequency) weighting does this quickly

and effectively. We will cover Tf-Idf and others variations of it in detail in a later chapter.

7.3 Hello World: Running a simple clustering example
Mahout contains various implementations of clustering, like K-means, fuzzy K-means, and meanshift to

name a few. In upcoming chapters we will review each of the clustering algorithms in Mahout and their

real world applications. We will look at how to represent the data, run various algorithms, tune their

parameters, and how to customize clustering to fit real world problems.

7.3.1 Creating the input
First, let us try a simple example, which clusters points in two dimensions like the one we saw in figure

7.1. First, we need to input the points in a plane.

We start by creating a list of points to cluster. Mahout clustering algorithms takes input in a

particular binary format called SequenceFile, from Hadoop. The input encodes Vectors, each of which

represents one point. We have three steps to input the data for Mahout clustering – firstly, you need to

preprocess your data, then creates vectors from them, and finally save them in the SequenceFile format

and input that to algorithm. In the case of points, no preprocessing is necessary as they are already

vectors in the 2-dimensional plane. So we will need to convert them to a Vector class and save them as

SequenceFile. We will give an overview of what SequenceFile can do but, a discourse into the details of

the implementation and the format is beyond the scope of this book. For more details you can look at

Hadoop in Action written by Chuck Lam or read the documentation from the hadoop website.

Listing 7.1 Sample input to our first clustering example
(1,1)
(2,1)
(1,2)
(2,2)
(3,3)
(8,8)
(8,9)
(9,8)
(9,9)

Licensed to nancy chen <amigo4u2009@gmail.com>

113

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Examine the sample input given above. Figure 7.2 draws them on the X-Y plane. Two clusters stand

out clearly; one cluster contains five points in the (1, 1), (3, 3) rectangular region, and other contains

points in the (8, 8), (9, 9) rectangular region. The first step is to convert this input to a Mahout-

readable format.

Figure 7.2 Plot of the input points in the x-y plane

We will need to represent these points as Vectors in Mahout. When you hear “vector” you may be

recalling your high school physics course, where vectors were arrows and directions, not single points in

space. For our purposes in machine learning, the term “vector” just refers to an ordered list of numbers,

which is all a point or physics vector is anyway. Vectors have a number of dimensions (above, 2

dimensions) and a numeric value for each dimension.

Appendix A explains the Vector interface and its implementations in some detail; refer to it as

needed to better understand how Mahout represents vectors. The details are not yet critical to our

example, however.

In listing 7.2, we show clustering of 2-dimensional points using Mahout. The function getPoints

converts the given set of input points to RandomAccessSparseVector format. Once the vectors are

generated, they are written in the SequenceFile format for the clustering algorithms in mahout to read.

The function writePointsToFile shows how it is done.

7.3.2 Using Mahout Clustering
Once the input is ready, we can cluster those nine points. In this example, we use the k-means

clustering algorithm. The k-means clustering algorithm takes the following input parameters:

 The SequenceFile containing the input vectors.

 The SequenceFile containing the initial cluster centers. In our case we have seeded 2 clusters,
hence 2 centers.

Licensed to nancy chen <amigo4u2009@gmail.com>

114

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 The similarity measure to be used. We are using EuclideanDistanceMeasure as the measure of
similarity. We will be exploring other kinds of similarity measures later in this chapter.

 The convergenceThreshold, if in a particular iteration, any centers of the clusters do not change
beyond that threshold, then no further iterations are done.

 The number of iterations to be done.

 The number of reducers to be used. We will be using only 1. This is the value determining the

parallelism of the execution. When we run this algorithm on a hadoop cluster, we will see how
useful this parameter is.

 The Vector implementation used in the input files.

Figure 7.3 Marking the initial clusters is an important step in k-means clustering.

We have everything we need except the initial set of cluster centers. Since we are trying to generate

two clusters from the nine points, we have to add two points in the initial set of centers as shown in

Figure 7.3. This set serves as the best guess of the cluster center for the K-means algorithm. Of course,

we can observe that these guesses aren’t very good; both clearly fall within one of the apparent

clusters. However in non-trivial examples there would be no way to know beforehand where the clusters

like. There are various methods to estimate the centers of the clusters. Canopy clustering algorithm can

do this estimation in a fast and efficient manner.

Even if the estimated centers are way off, the K-means algorithm would re-adjust it at the end of

each iteration by computing the average center or the centroid of all points in the cluster. To

demonstrate this corrective nature of K-means, we shall start with center points taken close together at

(1, 1) and (2, 1).

Licensed to nancy chen <amigo4u2009@gmail.com>

115

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Listing 7.2 SimpleKMeansClustering.java

 public static final double[][] points = { {1, 1}, {2, 1}, {1, 2},
 {2, 2}, {3, 3}, {8, 8}, {9, 8}, {8, 9}, {9, 9}};

 public static void writePointsToFile(List<Vector> points,
 String fileName, FileSystem fs, Configuration conf)
 throws IOException {
 Path path = new Path(fileName);
 SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
 path, LongWritable.class, VectorWritable.class);
 long recNum = 0;
 VectorWritable vec = new VectorWritable();
 for (Vector point : points) {
 vec.set(point);
 writer.append(new LongWritable(recNum++), vec);
 }
 writer.close();
 }

 public static List<Vector> getPoints(double[][] raw) {
 List<Vector> points = new ArrayList<Vector>();
 for (int i = 0; i < raw.length; i++) {
 double[] fr = raw[i];

 Vector vec = new RandomAccessSparseVector("vector: "
 + String.valueOf(i), fr.length);

 vec.assign(fr);
 points.add(vec);
 }
 return points;
 }

 public static void main(String args[]) throws Exception {

 int k = 2; #1

 List<Vector> vectors = getPoints(points);

 File testData = new File("testdata"); #2
 if (!testData.exists()) {
 testData.mkdir();
 }
 testData = new File("testdata/points");
 if (!testData.exists()) {
 testData.mkdir();
 }

Licensed to nancy chen <amigo4u2009@gmail.com>

116

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);
 writePointsToFile(vectors, "testdata/points/file1", fs, conf);

 Path path = new Path("testdata/clusters/part-00000"); #3
 SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
 path, Text.class, Cluster.class);

 for (int i = 0; i < k; i++) {
 Vector vec = vectors.get(i);

 Cluster cluster = new Cluster(vec, i);
 cluster.addPoint(cluster.getCenter());
 writer.append(new Text(cluster.getIdentifier()), cluster);
 }
 writer.close();

 KMeansDriver.runJob("testdata/points", "testdata/clusters", #4
 "output", EuclideanDistanceMeasure.class.getName(), 0.001,
 10, 1);

 SequenceFile.Reader reader = new SequenceFile.Reader(fs,
 new Path("output/points/part-00000"), conf);

 Text key = new Text();
 Text value = new Text();
 while (reader.next(key, value)) { #5
 System.out.println(key.toString() + " belongs to cluster "
 + value.toString());
 }
 reader.close();
 }

#1 The number of clusters to be formed
#2 Create the input directories for the data
#3 Write the initial centers
#4 Run the K-means algorithm
#5 Read the output file and output the vector name and the cluster id it belongs to.

To get a clear picture of what we did in the sample code, take a look at the flow in figure 7.4.

Licensed to nancy chen <amigo4u2009@gmail.com>

117

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 7.4 Flow of the hello world example for clustering.

7.3.3 Analyzing the output
Compile and run this code using your favorite IDE or from the command line. Make sure you add all the

Mahout dependency JAR files to the classpath. See the section on Maven compilation for more idea on

packaging of your code with mahout classes and its dependencies.

Since our data is small, in about 5-10 seconds, you will get the following output

vector: 0 belongs to cluster 0
vector: 1 belongs to cluster 0
vector: 2 belongs to cluster 0
vector: 3 belongs to cluster 0
vector: 4 belongs to cluster 0
vector: 5 belongs to cluster 1
vector: 6 belongs to cluster 1
vector: 7 belongs to cluster 1
vector: 8 belongs to cluster 1

We had marked each vector with a string identifier to uniquely identify it. This mechanism allows

users to attach a unique identifier to each unit of data. This helps to evaluate and reconstruct the

clusters later. As you see in figure 7.5, the algorithm was able to readjust the center of the cluster 1

from (2, 1) to (8.5, 8.5) – the centroid of all points in cluster 1.

In this simple example, Mahout clustered the points into two sets quickly and with great precision.

Real world data is not as simple. With millions of such input vectors, each having millions of dimensions,

clustering becomes quite non-trivial. Quality and performance issues arise. It will be difficult to decide

question like how many clusters to produce, or what kind similarity measure should to choose. Tuning

performance and even evaluating the quality of the clusters will need attention. Getting the perfect

clustering is a never-ending task.

Licensed to nancy chen <amigo4u2009@gmail.com>

118

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Mahout clustering implementations are configurable enough to fit the needs of most any clustering

problem -- the question is of course which configuration is best! We will go into detail about various

parameters and the effect they have on clustering in the chapter Clustering Algorithms in Mahout. We

will also examine some real world scenarios and show some techniques to improve both the clustering

quality and performance.

Figure 7.5 The output of our hello world k-means clustering program. Even with distant centers, K-means algorithm was
able to correctly iterate and correct the center based on Euclidean distance measure.

7.4 Exploring distance measures
In the above example, we used EuclideanDistanceMeasure to calculate the distance between points.

While it proved to be an effective measure in generating the clusters we wanted, there are other

similarity measure implementations in the Mahout clustering package. Aptly named as DistanceMeasure

implementations, these classes calculate the distance between two vectors according to some definition

of “distance”. Shorter distances indicate more similarity between the vectors and vice-versa; similarity

and distance are related concepts.

7.4.1 Euclidean distance measure
The Euclidean distance, which we’ve already seen, is the simplest of all distance measures. It is the

most intuitive and matches our normal idea of “distance”. For example, given two points in a plane, the

Euclidean distance measure could be calculated by using a ruler to measure the distance between them.

Mathematically, Euclidean distance between two n-dimensional vectors (a1, a2, … , an) and B (b1, b2,

… ,bn) is:

d = √((a1-b1)2 + (a2-b2)2 + … + (an-bn)2)

The Mahout class that implements this measure is EuclideanDistanceMeasure.

Licensed to nancy chen <amigo4u2009@gmail.com>

119

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

7.4.2 Squared Euclidean distance measure
Just as the name suggests, this distance measure’s value is just the square of the value returned by

the Euclidean distance measure. For n-dimentional vectors (a1, a2, … , an) and (b1, b2, … ,bn) the

distance becomes:

d = (a1-b1)2 + (a2-b2)2 + … + (an-bn)2

The Mahout class that implements this measure is SquaredEuclideanDistanceMeasure.

Figure 7.6 Difference between Euclidean and Manhattan distance measure. Euclidean distance measure gives 5.65 as
the distance between (2, 2) and (6, 6) where as Manhattan distance is 8.0

7.4.3 Manhattan distance measure
Unlike Euclidean distance, under the Manhattan distance measure, the distance between any two points

is the sum of the absolute differences of their coordinates. Figure 7.6 compares the Euclidean distance

and Manhattan distance between two points in the X-Y plane. This distance measure takes its name

from the grid-like layout of streets in Manhattan. As any New Yorker knows, you can’t walk from 2nd

Avenue and 2nd Street to 6th Avenue and 6th Street by walking straight through buildlings. The real

distance walked is 4 blocks up and 4 blocks over. Mathematically, Manhattan distance between two n-

dimentional vectors (a1, a2, … , an) and (b1, b2, … , bn) is:

d = (a1-b1) + (a2-b2) + … + (an-bn)

The Mahout class that implements this measure is ManhattanDistanceMeasure.

7.4.4 Cosine distance measure
The cosine distaince measure requires us to again think of points as like vectors from the origin to those

points. These vectors form an angle between them, as illustrated in Figure 7.7.

Licensed to nancy chen <amigo4u2009@gmail.com>

120

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 7.7 Cosine angle between the vectors (2,3) and (4, 1) as calculated from the origin

When this angle is small, the vectors must be pointing in somewhat the same direction, and so in

some sense the points are “close”. The cosine distance just computes the cosine of this angle, which is

near 1 when the angle is small, and decreases as it gets larger. It subtracts the cosine value from 1 in

order to give a proper distance, which is 0 when close and larger otherwise.

 The formula for cosine distance between n-dimensional vectors (a1, a2, … , an) and (b1, b2, … ,bn)

is:

d = 1 - (a1b1 + a2b2 + … + anbn) / (√(a12 + a22 + … + an2)√(b12 + b22 + … + bn2))

Note, this doesn’t account for the length of the two vectors; all that matters are that the points are

in the same direction from the origin. Also note that the cosine distance measure ranges from 0.0 (two

vectors along the same direction) to 2.0 (two vectors along opposite directions). The Mahout class that

implements this measure is CosineDistanceMeasure.

7.4.5 Tanimoto distance measure
Cosine distance measure disregards the lengths of both vectors. This may work well for some data sets,

but it will lead to poor clustering in others where the relative lengths of the vectors contain valuable

information. For example, consider three vectors A (1.0, 1.0), B (3.0, 3.0) and C (3.5, 3.5). Even

though they point in the same direction, the cosine distance is 0.0 for any two of these vectors. Cosine

distance does not capture the fact that B and C are in a sense closer. The Euclidean distance measure

would reflect this, but it doesn’t take account of the angle between the vectors, the fact that they’re “in

the same direction”. We might want, at times, a distance measure that reflects both.

Licensed to nancy chen <amigo4u2009@gmail.com>

121

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Tanimoto distance measure, also known as Jaccard’s distance measure, captures the information

about angle and the relative distance between the points. The formula for the Tanimoto distance

between two n-dimentional vectors (a1, a2, … , an) and (b1, b2, … , bn) is:

p = (a1b1 + a2b2 + … + anbn)

d = 1 - p / (√(a12 + a22 + … + an2) + √(b12 + b22 + … + bn2) - p)

7.4.6 Weighted distance measure
Mahout also provides a WeightedDistanceMeasure class, and implementations of Euclidean and

Manhattan distance measures using it. Weighted distance measure is an advanced feature in Mahout

that allows you to give weights to different dimensions to either increase or decrease the effect of a

dimension on the value of the distance measure. The weights in a WeightedDistanceMeasure need to be

serialized to a file in a Vector format.

For example, when calculating distance between points in the X-Y plane, suppose we wished to make

the x coordinate twice as significant. We would do so by doubling all x values, conceptually. To do this

with a weighted distance measure, we would construct a weight Vector with value 2.0 in the 0th index

(for x) and 1.0 the 1st index (for y). This will affect distance measures differently, but will in general

make the distance value more sensitive to difference in x value.

7.5 Hello World Again! Trying out various distance measures
We will run the hello world K-means clustering example using Euclidean, Manhattan, Cosine and

Tanimoto distance measure, with k=2 (producing two clusters). The results of various runs are

tabulated in Table 7.1

The cosine distance measure clustering appears puzzling. From Figure 7.2, we see that only the point

(2, 1) was at an angle greater than 45 from the x axis. The clustering algorithm chose to put all other

points, at 45 and below, in one cluster. This doesn’t mean that cosine distance measure is bad, but

only that it doesn’t work well on this data set. In domains such as text clustering, for instance, it can

work well.

SquaredEuclideanDistanceMeasure actually increased the number of iterations. This is because

absolute distance values became larger when using that measure, and we ran our algorithm using the

same small value for the convergenceThreshold. So, it took a couple of iterations more for the

convergence to occur.

Distance
Measure

Number of
iterations

Vectors9 Vectors in
Cluster 1

 in
Cluster 0

EuclideanDistanceMeasure 3 0, 1, 2, 3, 4 5, 6, 7, 8

SquaredEuclideanDistanceMeasure 5 0, 1, 2, 3, 4 5, 6, 7, 8

9 These are the names/ids of the vectors as given in the Clustering Hello World source code

Licensed to nancy chen <amigo4u2009@gmail.com>

122

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

ManhattanDistanceMeasure 3 0, 1, 2, 3, 4 5, 6, 7, 8

CosineDistanceMeasure 1 1 0, 2, 3, 4, 5, 6, 7, 8

TanimotoDistanceMeasure 3 0, 1, 2, 3, 4 5, 6, 7, 8

Table 7.1 Result of clustering using various distance measures

In future chapters we will see more clustering methods and show how each of them is suited for

various kinds of data, and optimize them using various distance measures for both speed and quality.

7.5 Summary
In this chapter, we introduced the idea of clustering. We used an intuitive approach to cluster books

in a library. We formalized notions of clustering using points in two dimensions. We created a simple

set of points in the plane and ran a simple K-means clustering example using

EuclideanDistanceMeasure.

We then explained the various distance measures found in Mahout. Armed with these, we re-ran our

example and compared the clusters generated using each of the distance measures.

Before studying clustering algorithms in detail, we need to spend some time with another

foundational concept in Mahout in the next chapter: Representating Data.

Licensed to nancy chen <amigo4u2009@gmail.com>

123

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

8
Representing Data

This chapter covers:

 Representing data as a Vector

 Converting text documents into Vector form

 Normalizing data representations

This chapter explores ways of converting different kinds of objects into Vectors. A Vector is a very

simplified representation of data that can help clustering algorithms understand the object and help

compute that similarity with another object. To get good clustering, we need to understand the

techniques in vectorization: the process of representing objects as vectors.

In the last chapter, we got a taste of clustering. Books were clustered together based on their

similarity in words, and points in a two-dimensional plane were clustered together based on the distance

between them. In reality, clustering could be applied to any kind of object provided we can distinguish

similar and dissimilar items. Images could be clustered based on their colors, shapes in the image or

both. We could cluster photographs to perhaps try to distinguish photos of animals from those of

humans. We could even cluster species of animal by their average size, weight, number of legs and so

on to discover groupings automatically.

As humans, we can cluster these objects because we understand them, and ”just know” what is

similar and what isn’t. Computers unfortunately have no such intuition. So the clustering of anything via

algorithms starts with representing the object in a way that can be read by computers.

It turns out that it is quite practical, and flexible, to think of objects in terms of their measurable

features or attributes. For example, above, we identified size and weight as salient features that could

help produce some notion of animal similarity. Each object (animal) has a numeric value for this feature.

So, we want to describe objects as sets of values, each associated to one of a set of distinct

features, or dimensions -- does this sound familiar? We’ve all but described a vector again. While we’re

accustomed to thinking of vectors as arrows or points in space, they’re just ordered lists of values. As

such, they can easily represent objects.

Licensed to nancy chen <amigo4u2009@gmail.com>

124

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

We’ve already talked about how to cluster vectors in the previous chapter. But, how do we represent

vectors in Mahout? And how do we get from objects to vectors in the first place? That’s what we will see

in the next section.

8.1 Representing vectors
You might have encountered the word “vector” in many contexts. In physics, a vector denotes the

direction and magnitude of a force, or the velocity of a moving object like a car. In mathematics, a

vector is simply a point in space. Both these concepts have the same representation. In two dimensions,

any of these are represented as an ordered list of values, one for each dimension, like “(4, 3)”. Both

representations are illustrated in Figure 8.1. We often name the first dimension “x” and the second “y”

when dealing with two dimensions, but this won’t matter for our purposes in Mahout. As far as we’re

concerned, a vector can have two, three or ten thousand dimensions. The first one is dimension 0, the

next is dimension 1 and so on.

Figure 8.1 In physics, the vector can be thought of ray with a start point, direction and length and represents quantities
like velocity and acceleration. In geometry or space, the vector is just a point denoted by weights along each
dimension. The direction and magnitude of the vector is by default assumed to be a ray from the origin (0,0).

8.1.1 Understanding the difference between dense and sparse vectors
Vectors, as we’ve described them so far, are just an ordered list of values indexed by their dimension: a

number. So, you may already have imagined one natural way to represent a vector in a programming

language like Java: an array of numbers (doubles). In such a representation, the vector’s value at

dimension i would just be the value at array index i. This is a good way to represent a vector -- in some

situations. We will call this a “dense” vector representation.

What’s the alternative, then, to a “dense” vector representation? It is a “sparse” representation, but

to understand the motivation for this alternative, we must point out a difference between the vectors

you may be used to from physics and math, and those that are used to represent objects for

classification.

It is common for a vector, for our purposes, to have a large number of dimensions, and to have no

value in several of these many dimensions. “No value” here is like the programming concept of “null”,

but is represented as a zero value for a dimension in the vector. In physics or math, it’s unusual to

Licensed to nancy chen <amigo4u2009@gmail.com>

125

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

contemplate vectors with hundreds of dimensions, and, it’s also unusual to think of vectors with mostly

zero values, but this is a common sight when vectors are used for classification.

For such a vector, an array-based representation seems inefficient. The array would consist of

mostly zeroes, with an occasional non-zero value. It would be more reasonable to only represent those

dimensions with a non-zero value, not all of them. When dealing with vectors with millions of

dimensions, with mostly zero values, the inefficiency of a dense representation becomes acute.

Figure 8.2 A dense and sparse vector representation. A dense vector is a represented as a full array, so it needs to
store only the double values. Sparse vector saves on the space occupied by the zero valued cells but has an integer
sized overhead for every non-zero double value.

Enter “sparse” vectors, which are backed by something more like a Java Map, mapping dimensions

with a non-zero value to their values. While the memory required to store each dimension’s value is

higher than with a dense, array-backed representation, such a representation is superior when the

number of non-zero dimensions is relatively low. Figure 8.2 illustrates the differences between a dense

and sparse vector.

In Mahout, these ideas about vector representation are implemented as three different classes, each

optimized for different scenarios. These Vector implementation classes are DenseVector,

RandomAccessSparseVector, and SequentialAccessSparseVector.

DenseVector is backed by an array of doubles. Such a representation is quite memory efficient

when a vector has few non-zero values. It allows quick access to any dimension’s value, and quick

iteration over all dimensions’ values in order.

In RandomAccessSparseVector, the vector’s values are stored in HashMap-like structure, where

keys are ints and values are doubles. Only dimensions with non-zero values are stored, which

improves memory-efficiency when a vector has many non-zero dimensions. Accessing a dimension’s

value is slightly slower as compared to a dense vector; iterating over dimensions in order is, however,

much slower.

Compare this with SequentialAccessSparseVector, where the vector is represented with

parallel arrays of ints and doubles. Due to this, the iteration over the vector in order by dimension is

fast. But, random lookups and insertion of values are slower than with RandomAccessSparseVector.

These three implementations provide Mahout algorithms with an implementation whose performance

characteristics suit the nature of the data, and way in which it is accessed. The choice of the

implementation depends on the algorithm. If the algorithm does a lot of random insertions and updates

of a vector’s values, then an implementation with fast random access like DenseVector or

Licensed to nancy chen <amigo4u2009@gmail.com>

126

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

RandomAccessSparseVector would be appropriate. On the other hand, for an algorithm like K-Means

clustering which calculates the magnitude of the vectors repeatedly, the sequential-access

implementation will perform faster than the random-access sparse vector.

8.1.2 Transforming data into vectors
To cluster objects, those objects first must be converted into vectors, or “vectorized”. The vectorization

process is unique to each type of data. Since we are dealing with clustering in this section, we will talk

about this data transformation with clustering in mind. We hope that by now the representation of an

object as an n-dimensional vector of some kind is easy to accept. Objects must first be construed as a

vector having as many dimensions as the number of its features. Let’s understand this more with an

example.

Say, we want to cluster a bunch of apples. They are of different shapes, different sizes, and different

shades of red, yellow and green as shown in Figure 8.3. We define a distance measure, which says that

two apples are similar if they differ in few features, and by a small amount. So a small, round, red apple

is more similar to a small, round, green one than a large, ovoid green one.

The process of vectorization starts with assigning features to a dimension. Let’s say weight is feature

(dimension) 0, color is 1, and size is 2. So the vector of a small round red apple looks like [0 => 100
gram, 1 => red, 2 => small]. But this “vector” doesn’t have all the numeric values yet, and it

needs to.

For dimension 0, we need to express weight as a number. This could simply be the measured weight

in grams or kilograms. Size, the dimension 2 doesn’t necessarily mean the same as weight. For all we

know, the green apple could be denser than the red apple due to the freshness. Density/volume could

be used provided we have the instrument to measure the same. Size on the other hand could even be

user perceived numbers. Small sized apple could be of size value 1, medium could be 2, and large 3.

Licensed to nancy chen <amigo4u2009@gmail.com>

127

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 8.1 Apples of different sizes and colors needs to be converted into an appropriate vector form. The trick is to
figure out how the different features of the apples translate into a decimal value.

What about color, the dimension 1? We could arbitrarily assign numbers to it, like red = 0.0, green =

1.0, yellow = 2.0. This is a crude representation; it will work in many cases but fails to reflect the fact

that yellow is a color between red and green in the visible spectrum. We could fix that by changing

mappings, but perhaps better would be to use something like the wavelength of the color (400nm -

650nm). This maps color to a meaningful and objective dimension value. Using these measures as

properties of the apple, the vectors for some apples are described in table 8.1.

Apple

Weight (Kg)
(0)

Color
(1)

Size
(2)

Vector

Small round green 0.11 510 1 [0.11, 510, 1]

Large oval red 0.23 650 3 [0.23, 650, 3]

Small Elongated red 0.09 630 1 [0.09, 630, 1]

Large round yellow 0.25 590 3 [0.25, 590, 3]

Medium oval green 0.18 520 2 [0.18, 510, 2]

Table 8.1 Set of apples of different weight, sizes and colors converted to vectors

If we weren’t interested in clustering apples based on similarity in color shades, we could have kept

each color in different dimensions. That is, red would be dimension one, green the dimension three, and

yellow in the fourth dimension. If the apple is red, then red will have value 1 and the others zero. So,

Licensed to nancy chen <amigo4u2009@gmail.com>

128

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

we could store these vectors in a sparse format and the distance measure would consider only the

presence of non-zero value in these dimensions and cluster together those apples, which are of the

same color.

One possible problem with our chosen mappings to dimension values is that dimension 1’s values are

much larger. If we applied a simple distance-based metric to determine similarity between these

vectors, color differences would dominate the result. A relatively small color difference of 20nm is

treated as equal to a huge size difference of 20cm. weighting the different dimensions solves this

problem.

The importance of weighting is discussed in Section 8.2 where we try to generate vectors from text

documents. The words in the document do not represent the document object to the same extend. The

weighting technique helps magnify the weights of more important words and shrinks the least important

ones.

Having established how to encode apples as vectors, we look at how in particular one prepares

vectors for consumption by Mahout. An implementation of Vector is instantiated and filled in for each

object; then, all Vectors are written to a file in the SequenceFile format, which is read by the

Mahout algorithms. SequenceFile is a format from the Hadoop library, and encodes a series of key-

value pairs. Keys must implement WritableComparable from Hadoop and values must implement

Writable. These are Hadoop’s equivalent of the Java’s own Comparable and Serializable

interfaces.

For our example, we will use the vector’s name or description as a key, and the vector itself as the

value. Mahout’s Vector classes do not implement the Writable interface to avoid coupling them

directly to Hadoop. However the VectorWritable wrapper class may be used to wrap a Vector and

make it Writable. The Mahout Vector can be written to the SequenceFile using the

VectorWritable class as shown in listing 8.1.

Listing 8.1 ApplesToVectors.java
public class ApplesToVectors {
 public static void main(String args[]) throws Exception {
 List<NamedVector> apples = new ArrayList<NamedVector>();

 NamedVector apple;
 apple = new NamedVector(A
 new DenseVector(new double[] {0.11, 510, 1}),
 "Small round green apple");
 apples.add(apple);
 apple = new NamedVector(
 new DenseVector(new double[] {0.2, 650, 3}),
 "Large oval red apple");
 apples.add(apple);
 apple = new NamedVector(
 new DenseVector(new double[] {0.09, 630, 1}),
 "Small elongated red apple");
 apples.add(apple);
 apple = new NamedVector(
 new DenseVector(new double[] {0.25, 590, 3}),
 "Large round yellow apple");
 apples.add(apple);
 apple = new NamedVector(
 new DenseVector(new double[] {0.18, 520, 2}),

Licensed to nancy chen <amigo4u2009@gmail.com>

129

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 "Medium oval green apple");
 apples.add(apple);

 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);

 Path path = new Path("appledata/apples");
 SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
 path, Text.class, VectorWritable.class);
 VectorWritable vec = new VectorWritable();
 for (NamedVector vector : apples) {
 vec.set(vector); B
 writer.append(new Text(vector.getName()), vec);
 }
 writer.close();

 SequenceFile.Reader reader = new SequenceFile.Reader(fs,
 new Path("appledata/apples"), conf);

 Text key = new Text();
 VectorWritable value = new VectorWritable();
 while (reader.next(key, value)) {
 System.out.println(key.toString() + " " + value.get().asFormatString());
 }
 reader.close();
 }
}

A Wrap the vector inside a NamedVector to assign a string name to it
B VectorWritable class helps serialize the vector data into the SequenceFile

Thus the process of selecting the features of an object and mapping them into a real number is

known as feature selection. Since the basic data structure used in Mahout is vectors, the process of

encoding features as a vector is named vectorization. Any kind of object can be converted to a vector

form using reasonable approximations of the feature values, like it was done for apples. But now we

turn to vectorizing one particularly interesting type of object: text documents.

8.2 Representing text documents as vectors
Text content in the digital form is exploding. The Google search engine alone indexes over 20 billion

web documents. That’s just a fraction of the publicly crawl-able information. The estimated size of text

data (both public and private) could go well beyond petabytes range: that’s a 1 followed by 15 zeros.

There is a huge opportunity here for machine learning algorithms like clustering and classification to

figure out structure and meaning in such an unstructured world and learning the art of text vectorization

is the first step into it.

“Vector space model (VSM)” is the term for the common way of vectorizing text documents. First,

imagine the set of all words that could be encountered in a series of documents being vectorized. This

set might be all words that appear at least once in any of the documents. Imagine each word is

assigned a number, which is the dimension it will occupy in document vectors.

Licensed to nancy chen <amigo4u2009@gmail.com>

130

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

For example, if the word “horse” is assigned to the 39,905th index of the vector, then the word

“horse” will correspond to the 39,905th dimension of document vectors. A document’s vectorized form

merely consists, then, of the number of times each word occurs in the document, stored the vector as

its value along that word’s dimension. The dimension of these document vectors can be very large. The

maximum dimensions possible is called the cardinality of the vector. Since the counts of all possible

words or tokens are unimaginably large, text vectors are usually assumed to have infinite dimensions.

The value of the vector dimension for a word is usually the number of occurrence of the word in the

document. This is known as term frequency weighting (TF). Note that values in a vector are also

referred to as “weights” in this field; you may see references to “weighting” instead of values. The

number of unique words that appear in one document is typically small compared to the number of

unique words that appear in any document in a collection being processed. Hence, these high-dimension

document vectors are quite sparse.

In clustering, we frequently try to find the similarity between two documents based on a distance

measure. In typical English-language documents, the most frequent words will be “a”, “an”, “the”,

“who”, “what”, “are”, “is”, “was” and so on. Such words are called stop-words. If we calculate the

distance between two document vectors using any distance measure, we see that the distance value is

dominated by the weights of these frequent words.

This is the same problem we noted before with apples and color. This effect is undesirable because it

implies that two documents are similar mostly because words like “a”, “an”, and “the” occur in both.

But, intuitively, we think of two documents as similar if they talk about similar topics, and words that

signal a topic are usually the rare words like “enzyme” or “legislation” or “jordan” etc. This makes

simple term-frequency based weighting undesirable for clustering and for applications where document

similarity is to be calculated. Fortunately, weighting can be modified with a very simple but effect trick

to fix these shortcomings as seen in the following sub-section.

8.2.1 Improving weighting with TF-IDF
Term frequency - inverse document frequency (TF-IDF) weighting is a widely used improvement on

simple term frequency weighting. The “IDF” part is the improvement; instead of simply using term

frequency as values in the vector, this value is multiplied by the inverse of the term’s document

frequency. That is, its value is reduced to the extent that the word occurs frequently across documents.

 To illustrate this, say that a document has words w1, w2, ..., wn with frequency f1, f2, …, fn. The

term frequency (TFi) of a word wi is the frequency fi.

To calculate the inverse document frequency, first, the document frequency (DF) for each word is

calculated. Document frequency is simply the number of documents the word occurs in. The number of

times a word occurs in a document is not counted in document frequency. The inverse document

frequency or IDFi for a word wi is:

IDFi = 1 / DFi

If a word occurs frequently in a collection of documents, its DF value is large and its IDF value is

small. DF can be very large, and so the IDF value can be very small -- so small that it risks. In such

cases its best to normalize the IDF score by multiplying it by a constant number. Usually we multiply it

by the document count (N) and thus the IDF equation will look like:

Licensed to nancy chen <amigo4u2009@gmail.com>

131

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

IDFi = N / DFi

Therefore the weight of a word in a document vector is:

wi = TFi * IDFi = TFi * N / DFi

The IDF value in the above form is still not ideal, as it masks the effect of TF on the final term

weight. To reduce this problem, a usual practice is to use the logarithm of the IDF value instead:

IDFi = log (N / DFi)

Thus the TF-IDF weight for a word wi becomes:

wi = TFi * log (N / DFi)

That is, the document vector will have this value at the dimension for word i. This is the classic TF-

IDF weighting. Stop words get a small weight, and the terms that occur infrequently get a large weight.

The “important” words or the topic words usually have a high TF and somewhat large IDF and so the

product of the two becomes a larger value, thereby giving more importance to these words in the vector

produced.

The basic assumption of vector space model is that the words are dimensions and therefore are

orthogonal to each other. In other words, VSM assumes that occurrence of words are independent of

each other, in the same sense that a point’s x coordinate is entirely independent of its y coordinate, in

two dimensions. We know this is wrong in many cases. For example the word “Cola” has higher

probability of occurrence along with the word “Coco” and therefore these words are not truly

independent. Other models try to consider word dependencies. One well-known technique is Latent

Semantic Indexing (LSI). LSI detects dimensions that seem to go together and merges them into a

single one. Due to the reduction in dimension, this speeds up clustering computations. It improves the

quality of clustering, as there is now a single good feature for the document object that dominates

grouping really well. At the time of writing, Mahout does not yet implement this feature. However, TF-

IDF has proved to work remarkably well even with the independence assumption. Mahout currently

provides a solution to the problem of word dependencies using a method called collocation or n-gram

generation, which is described in the following sub-section.

8.2.2 Accounting for word dependencies with n-gram collocations
A group of words in a sequence is called an n-gram. A single word can be called a unigram. Two words

like “Coca Cola” can be considered a single unit and called a bigram. Three and more terms can be

called trigrams, 4-grams, 5-grams and so on and so forth. Classic TF-IDF weighting assumes that the

words occur independently of other words. The vectors created using this method usually lack the ability

to identify key features of the document, which may be dependent.

To circumvent this problem, Mahout implements techniques to identify groups of words that have an

unusually high probability of occurring together, such as “Martin Luther King Jr” or “Coca Cola”. Instead

Licensed to nancy chen <amigo4u2009@gmail.com>

132

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

of creating vectors where dimensions map to single words (unigrams), we could as easily create vectors

where dimensions map to bigrams -- or even both. TF-IDF can then work its magic as before.

From a sentence of multiple words, we can generate all n-grams by selecting sequential blocks of n

words. This exercise will generate many n-grams, most of which do not represent a meaningful unit. For

example, from the sentence “It was the best of times it was the worst of times”, we can generate the

following bigrams:

“It was”

“was the”

“the best”

“best of”

“of times”

“times it”

“it was”

“was the”

“the worst”

“worst of”

“of times”

Some of these are good features (“the best”, “the worst”) for generating document vectors, but

some of them aren’t (“was the”). If we combine the unigrams and bigrams from a document and

generate weights using TF-IDF, we will end up with large vectors with many meaningless bigrams

having large weights on account of their large IDF. This is quite undesirable. Mahout solves this by

passing the n-grams through something called a log-likelihood test, which can determine whether two

words occurred together rather by chance, or because they form a significant unit. It selects the most

significant ones and prunes away the least significant ones. Using the remaining n-grams, TF-IDF

weighting scheme is applied and vectors are produced. In this way, significant bigrams like “Coca Cola”

can be more properly accounted for in a TF-IDF weighting.

In Mahout, text documents are converted to vectors using TF-IDF weighting and n-gram collocation

using the DictionaryVectorizer class. In the next section we will show how starting from a

directory full of documents one can create TF-IDF weighted vectors.

8.3 Generating vectors from documents
Now we examine two important tools that generate vectors from text documents. The first is the class

SequenceFilesFromDirectory, which generates an intermediate document representation in

SequenceFile format from text documents under a directory structure.

The second, SparseVectorsFromSequenceFiles uses the text documents in the SequenceFile

format to convert the documents to vectors using either TF or TF-IDF weighting with n-gram generation.

The intermediate SequenceFile is keyed by document ID; the value is the document text content. So

starting from a directory of text documents with each file containing a full document, we will show how

to convert them to vectors.

For the purpose of this example we will use the Reuters 21578 news collection10

10 http://www.daviddlewis.com/resources/testcollections/reuters21578/

. It is a widely used

dataset for machine learning research. The data was originally collected and labeled by Carnegie Group,

Licensed to nancy chen <amigo4u2009@gmail.com>

133

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Inc. and Reuters, Ltd. in the course of developing the CONSTRUE text categorization system. The

Reuters 21578 collection is distributed in 22 files, each of which contains 1000 documents, except the

last (reut2-021.sgm) that contains 578 documents.

The files are in SGML format, which is similar to XML. We could create a parser for the SGML files

and write the document ID and document text into SequenceFiles, and use the vectorization tool

above to convert them to vectors. However, a much quicker way is to re-use the Reuters parser given in

the Lucene benchmark JAR file. Since its bundled along with Mahout, all we need to do is change to the

examples/ directory under Mahout and run the class

org.apache.lucene.benchmark.utils.ExtractReuters. Before doing this, download the

Reuters collection from the website11

 and extract it in the reuters/ folder under examples/. Run the

Reuters extraction code from the examples directory as follows:

mvn -e -q exec:java
-Dexec.mainClass="org.apache.lucene.benchmark.utils.ExtractReuters"
-Dexec.args="reuters/ reuters-extracted/"

Using the extracted folder, run the SequenceFileFromDirectory class. We can use the launcher

script from the mahout root directory to do the same:

bin/mahout seqdirectory -c UTF-8
-i examples/reuters-extracted/ -o reuters-seqfiles

This will write Reuters articles in the SequenceFile format. Now the only step left is to convert this

data to vectors. For that run the SparseVectorsFromSequenceFiles class using the Mahout

launcher script:

bin/mahout seq2sparse -i reuters-seqfiles/ -o reuters-vectors -w

TIP

In Mahout, the –w flag is used to denote whether or not to overwrite the output folder. Since Mahout

deals with huge datasets, it takes time to generate the output for each algorithm. This flag will

prevent accidental deletion of any output that took hours to produce.

The seq2sparse command in the Mahout launcher script reads the Reuters data from SequenceFile
and writes the vector generated by the dictionary based vectorizer to the output folder using the default

options as given in Table 8.2. Inspect the folder produced using the command line:

$ls reuters-vectors/
dictionary.file-0
tfidf/
tokenized-documents/
vectors/
wordcount/

11 http://www.daviddlewis.com/resources/testcollections/reuters21578/reuters21578.tar.gz

Licensed to nancy chen <amigo4u2009@gmail.com>

134

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

In the output folder we find a dictionary file and four directories. The dictionary file keeps the

mapping between a term and its integer ID. This file is useful when reading the output of different

algorithms, so we need to retain it. The other folders are intermediate folders generated during

vectorization process, which happens in multiple steps, or MapReduce jobs.

In the first step, the text documents are tokenized or in other words: split into individual words using

the Lucene StandardAnalyzer and stored in the tokenized-documents/ folder. The word counting

step, or the n-gram generation step (in this case only unigrams), iterates through the tokenized

documents and generates a set of important words from the collection. The third step converts the

tokenized documents into vectors using just the term-frequency weight, thus creating TF vectors. By

default, the vectorizer uses the TF-IDF weighting, so two more steps happen after this: the document-

frequency (DF) counting job, and the TF-IDF vector creation. The TF-IDF weighted vectorized

documents are found in the tfidf/vectors/ folder. For most applications, we need just this folder

and the dictionary file.

Option Flag Description Default Value

Overwrite
(bool)

-w If set, the output folder is overwritten. If not set,
the output folder is created if the folder doesn’t
exist. If the output folder does exist, the job fails
and an error is thrown. Default is unset.

N/A

Lucene
Analyzer name
(String)

-a The class name of the analyzer to use org.apache.lucene.
analysis.standard.S
tandardAnalyzer

Chunk size
(int)

-chunk The chunk size in megabytes. For large document
collections (sizes in GBs and TBs) we will not be
able to load the entire dictionary into memory
during vectorization. So we split theexport
MAVEN_OPTS=-Xmx1024m dictionary into
chunks of the specified size and perform
vectorization in multiple stages. Its recommended
to keep this size to 80% of the Java heap size of
the Hadoop child nodes to prevent the vectorizer
from hitting the heap limit

100

Weighting
(String)

-wt The weighting scheme to use. tf for term
frequency based weighting and tfidf for TF-IDF
based weighting

tfidf

Minimum
support
(int)

-s The minimum frequency of the term in the entire
collection so as to be considered as a part of the
dictionary file. Terms with lesser frequency are
ignored

2

Licensed to nancy chen <amigo4u2009@gmail.com>

135

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Minimum
document
frequency
(int)

-minDF The minimum number of documents the term
should occur so as to be considered as a part of
the dictionary file. Any term with lesser frequency
is ignored

1

Max document
frequency
percentage
(int)

-x This is a mechanism to prune out high frequency
terms or the stopwords. Any word that occurs in
more than the specified percentage of documents
out of the total number of documents in the
collection is ignored from being a part of the
dictionary

99

N-Gram size
(int)

-ng The max size of ngrams to be selected from the
collection of documents.

1

Minimum Log
Likelihood
Ratio (LLR)
(float)

-ml This is a flag that works only when ngram size is
greater than one. Very significant ngrams have
large scores ~ 1000. Lesser significant ones have
lower scores. While there is no specific method on
how this value is chosen, the rule of thumb
dictates that n-grams with LLR value < 1.0 are
irrelevant.

1.0

Normalization
(float)

-n The normalization value to use in the Lp space. A
detailed explanation of normalization is given in
Section 8.4. Default scheme is not to normalize
the weights

0

Number of
reducers
(int)

-nr The number of reducer tasks to execute in
parallel. This flag is useful when running
dictionary vectorizer on a Hadoop cluster. Setting
this to the maximum number of nodes in the
cluster gives maximum performance. Setting this
value higher than the number of cluster nodes
lead to a slight decrease in performance. For
more explanation read Hadoop documentation on
setting the optimium number of reducers

1

Create
sequential
access sparse
vectors
(bool)

-seq If set, the output vectors are created as
SequentialAccessSparseVectors. By
default the dictionary vectorizer generates
RandomAccessSparseVectors.
The former gives higher performance on certain
algorithms like k-means and SVD due to the
sequential nature of vector operations. By default
the flag is unset.

N/A

Licensed to nancy chen <amigo4u2009@gmail.com>

136

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Table 8.2 Flags of Mahout dictionary based vectorizer and their default values. To launch this run mahout laucher script
as $MAHOUT_HOME/bin/mahout seq2sparse

Table 8.2 details all the important flags used in the dictionary-based vectorizer. Let us revisit the

Reuters SequenceFiles and generate a vector dataset using non-default values. We will use the

following non-default flag values:

 org.apache.lucene.analysis.WhitespaceAnalyzer to tokenize words based on the
white-space characters between them. (-a)

 -Chunk size of 200MB. This value won’t produce any effect on Reuters, as the dictionary sizes are
usually in the range 1MB. (-chunk)

 Weighting method as “tfidf”. (-wt)

 Minimum support 5.(-s)

 Minimum document frequency 3. (-minDF)

 Maximum document frequency percentage of 90% to prune away high frequency words
aggressively. (-x)

 N-Gram size of 2 to generate both unigrams and bigrams. (-ng)

 Minimum value of log-likelihood ratio (LLR) is 50 to keep only very significant bigrams. (-ml)

 Normalization flag is unset (we will get back to this flag in the next section)

 Create SequentialAccessSparseVectors flag set (-seq)

Run the vectorizer using the above options in the Mahout launcher script

bin/mahout seq2sparse -i reuters-seqfiles/ -o reuters-vectors-bigram -w
-a org.apache.lucene.analysis.WhitespaceAnalyzer
-chunk 200 -wt tfidf -s 5 -md 3 -x 90 -ng 2 -ml 50 –seq

The dictionary file sizes from this vectorization job have increased from 654K to 1.2MB. Though we

pruned away more unigrams based on frequency, we added almost double the amount of bigrams even

after filtering using LLR threshold value. The dictionary size goes upto 2MB upon including trigrams. At

least it has only grown linearly as we move from 2-grams to 3-grams and onwards; this is attributable

to the LLR-based filtering process. Without this, the dictionary size would have grown exponentially.

At this point, you would be almost ready to try any clustering algorithm Mahout has to offer. There is

just one more concept in text vectorization that is important to understand: normalization, which we

explore next.

8.4 When normalization is needed
Normalization, here, is a process of cleaning up edge cases, data with unusual characteristics that skew

results disproportionally. For example, when calculating similarity between documents based on some

distance measure, it’s not uncommon that some particular document shows up as quite similar to all the

other documents. On closer inspection, we usually find that this happens because the document is large,

and its vector has many non-zero dimensions, causing it to be “close” to many smaller documents.

Somehow, we need to negate the effect of varying sizes of the vectors while calculating similarity. This

Licensed to nancy chen <amigo4u2009@gmail.com>

137

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

process of decreasing the magnitude of large vectors and increasing the magnitude of smaller vectors is

called normalization.

In Mahout, normalization uses what is known in statistics as a “p-norm”. For example, the p-norm of

a 3-dimensional Vector [x, y, z] is:

[x/(|x|p + |y|p + |z|p)1/p, y/(|x|p + |y|p + |z|p)1/p, z/(|x|p + |y|p + |z|p)1/p]

The expression (|x|p + |y|p + |z|p)1/p is known as the norm of a vector; here, we have merely divided

each dimension’s value by this number. The parameter p here could be any value greater than zero. The

1-norm, or “Manhattan norm”, of a vector is the vector divided by the sum of the weights of all the

dimensions:

[x/(|x| + |y| + |z|), y/(|x| + |y| + |z|), z/(|x| + |y| + |z|)]

The 2-norm, or “Euclidean norm” is the vector divided by the magnitude of the vector -- this magnitude

is the “length” of the vector as we are accustomed to understanding it:

[x/√(x2 + y2 + z2), y/√(x2 + y2 + z2), z/√(x2 + y2 + z2)]

The infinite norm is simply the vector divided by the weight of the largest magnitude dimension:

[x/max(|x|, |y|, |z|), y/max(|x|, |y|, |z|), z/max(|x|, |y|, |z|)]

The norm power (p) to choose depends upon the type of operations done on the vector. If the distance

measure used is Manhattan distance measure, the 1-norm will often yield better results with the data.

Similarly, if the cosine of Euclidean distance measure is being used to calculate similarity, the 2-norm

version of the vectors yields better results. That is to say, the normalization ought to relate to the

notion of “distance” used in the similarity metric, for best results.

 Note that the p in p-norm can be any rational number, so 3/4, 5/3, 7/5 are all valid powers of

normalization. In the dictionary vectorizer the power is set using the –norm flag. A value “INF” means

infinite norm. Generating the 2-normalized bigram vectors is as easy as running the Mahout launcher

using the seq2sparse command with the –n flag set to 2:

bin/mahout seq2sparse -i reuters-seqfiles/ -o reuters-normalized-bigram -w
-a org.apache.lucene.analysis.WhitespaceAnalyzer
-chunk 200 -wt tfidf -s 5 -md 3 -x 90 -ng 2 -ml 50 –seq –n 2

Normalization improves the quality of clustering a little. Further refinement in the quality of

clustering is achieved by the use to problem specific distance measures and appropriate algorithms. In

the next chapter, we will take you on an elephant-ride past the various clustering algorithms in Mahout.

8.5 Summary
In this chapter we learned about the most important data representation scheme used by machine

learning algorithms like clustering, the Vector format. There are two types of Vector implementations

Licensed to nancy chen <amigo4u2009@gmail.com>

138

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

in Mahout, sparse and dense vectors. Dense vectors are implemented by the DenseVector class;

RandomAccessSparseVector is a sparse implementation designed for applications requiring fast

random reads and the SequentialAccessSparseVector is designed for applications required fast

sequential reads.

We learned how to map important features of an object like an apple to numerical values and

thereby create vectors representing different types of apples. The vectors were then written to and read

form a SequenceFile, which is the format used by all the clustering algorithms in Mahout.

Text documents are frequently used in context of clustering. We saw how text documents could be

represented as Vectors using the Vector Space Model. The TF-IDF weighting scheme proved to be a

simple and elegant way to remove the negative impact of stop words during clustering. The assumption

of independence of words in the classic TF-IDF weighting scheme removes some important features

from text, but the collocation based n-gram generation in Mahout solves this problem to a great extent

by identifying significant groups of words using a log likelihood ratio test. We saw how the Mahout

dictionary-based vectorizer converted the Reuters news collections to vector with ease.

Finally we saw that the length of text documents negatively affects the quality of distance measures.

The p-normalization method implemented in the dictionary vectorizer solves this problem by re-

adjusting the weights of the vector by dividing by the p-norm of the vector.

Using the Reuters vector dataset, we can do clustering with different techniques, each having its

pros and cons. We will explore these techniques in the next chapter on clustering algorithms.

Licensed to nancy chen <amigo4u2009@gmail.com>

139

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

9
Clustering Algorithms in Mahout

This chapter covers:

 K-Means clustering

 Centroid generation using Canopy clustering and K-Means++

 Fuzzy K-Means clustering, Dirichlet process clustering

 Topic modeling using LDA as a variant of clustering

Now that we know how input data is represented as Vectors and how SequenceFiles are created for

input to the clustering algorithms, we are ready to explore the various clustering algorithms that Mahout

provides. There are many clustering algorithms in Mahout, and some work well for a given dataset while

others don’t. K-Means is a very generic clustering algorithm, which can be molded easily to fit almost all

situations. It’s also simple to understand and can easily be executed on parallel computers.

Therefore, before going into the details of various clustering algorithms, it’s best to get hands on

experience using the K-Means algorithm. Then it becomes easier to understand the shortcomings and

pitfalls and see how other techniques, though not so generic can help achieve better clustering of data.

Simultaneously, we will use K-Means algorithm to cluster news articles and improve the quality using

other techniques. Along the way, we will create a clustering pipeline for a news aggregation website to

get a better feel of the real world problems in clustering. Finally, we will explore Latent Dirichlet

Allocation (LDA) an algorithm, which closely resembles clustering, but achieves something far more

interesting. There is a lot to cover, so let’s not waste any time and jump right into the world of

clustering through the K-means algorithm.

9.1 K-Means clustering
K-Means is to clustering as Vicks is to cough syrup. It’s a simple algorithm and is more than 50 years

old. Stuart Lloyd first proposed the standard algorithm in 1957 as a technique for pulse code

modulation. However, it wasn't until 1982 before it got published12

12 Original Paper: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.1338

. It’s widely used as a clustering

Licensed to nancy chen <amigo4u2009@gmail.com>

140

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

algorithm in many fields of science. The algorithm requires the user to set the number of clusters k as

the input parameter.

9.1.1 Why only k?
K-Means algorithm puts a hard limitation on the number of clusters, k. This limitation might put a

doubtful question mark on the quality of this method. Fear not, as this algorithm has proven to work

very well for a wide range of real world problems over the last 25+ years of its existence. Even if the

estimate of the value k is sub-optimal, the clustering quality is not affected much by it.

Say, we are clustering news articles to get top-level categories like politics, science and sports. For

that we might want to choose a small value of k, which is in the range 10 – 20. If fine-grained topics are

needed, a larger value of k like 50-100 is necessary. Say, there are one million news articles in our

database and we are trying to find out groups of articles talking about the same story. The number of

such related stories would be much smaller than the entire corpus maybe in the range of 100 articles

per cluster. This means, we need a k value of 10000 to generate such a distribution. This will surely test

the scalability of clustering and this is where Mahout shines at its best.

For good quality clustering using K-Means, we will need to estimate the value of k. An approximate

way of estimating k is to figure it out based on the data we have, and the size of clusters we need. In

the case above, if there are around 500 news articles published about every story, we should be starting

our clustering with a k value like 2,000.

This is a crude way of estimating the number of clusters. Nevertheless, K-Means algorithm generates

decent clustering even with this approximation. The type of distance measure used mainly determines

the quality of K-Means clusters. In Chapter 7, we mentioned the various kinds of distance measures in

Mahout. It’s worthwhile to revise them to understand how it affects examples in this chapter.

9.1.2 All you need to know about K-Means
Let look at K-Means algorithm in detail. Suppose we have n points, which we need to cluster into k

groups. K-Means algorithm will start with an initial set of k centroid points. The algorithm does multiple

rounds of the processing and refines this centroid location till the iteration max-limit criterion is reached

or until the centroids converge to a fixed point from which it doesn’t move very much. A single K-Means

iteration is illustrated clearly in Figure 9.1. The actual algorithm is a series of such iteration, till it

encounters the criteria above.

There are two steps in this algorithm. The first step finds the points, which are nearest to each

centroid point and assigns them to that specific cluster. The second step recalculates the centroid point

using the average of the coordinates of all the points in that cluster. Such a two-step algorithm is a

classic case of what is known as EM Algorithm (Expectation Maximization)13. The algorithm is a two-step

process, which is processed repeatedly until convergence is reached. The first step, known as the

expectation (E) step finds the expected points associated with a cluster. The second step known as the

maximization (M) step improves the estimation of cluster center using the knowledge from the E step. A

complete discourse on expectation maximization is beyond the scope of this book, but plenty of

explanations and resources on EM are found online14

13 http://en.wikipedia.org/wiki/Expectation-maximization_algorithm

.

14 http://www.cc.gatech.edu/~dellaert/em-paper.pdf, Gives an easier explanation on EM Algorithm in terms of lower bound
maximization.

Licensed to nancy chen <amigo4u2009@gmail.com>

141

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 9.1 K-Means clustering in action. Starting with 3 random points as centroids (top-left), the Map stage (top-right)
assigns each point to the cluster nearest to it. In the reduce stage (bottom-left), the associated points are averaged out
to produce the new location of the centroid, leaving us with the final configuration (bottom-right). After each iteration,
the final configuration is fed back in to the same loop till the centroids converge.

Now that we have understood K-Means technique, let’s meet the important K-Means related classes

in Mahout and run a simple clustering example.

9.1.3 Running K-Means clustering
The K-Means clustering algorithm is run using either the KMeansClusterer or the KMeansDriver

class. The former one does an in-memory clustering of the points while the latter is an entry point to

launch K-Means as a Map/Reduce job. Both methods can be run like a regular Java program and can

read and write data from the disk. They can also be executed on a Hadoop cluster reading and writing

data to a distributed file system.

For this example, we are going to use a random point generator function to create the points. It

generates the points in the Vector format as a normal distribution around a given center. The points are

scattered around in a natural manner. These points are going to be clustered using the in-memory K-

Means clustering implementation in Mahout.

Licensed to nancy chen <amigo4u2009@gmail.com>

142

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

The generateSamples function in the listing 9.1 below takes a center say (1,1), the standard

deviation (2), and creates a set of n (400) random points around the center, which behaves like a

normal distribution. Similarly we will create two other sets with centers (1, 0) and (0, 2) and

standard deviation 0.5 and 0.1 respectively. In listing 9.1, we ran the KMeansClusterer using the

following parameters:

 The input points are in the List<Vector> format

 The DistanceMeasure is EuclideanDistanceMeasure

 The threshold of convergence is 0.01

 The number of clusters k is 3

 The clusters were chosen using a RandomSeedGenerator as in the hello-world example of
Chapter 7

9.1 In-memory clustering example using the K-Means algorithm
private static void generateSamples(List<Vector> vectors, int num,
 double mx, double my, double sd) {
 for (int i = 0; i < num; i++) {
 sampleData.add(new DenseVector(
 new double[] {
 UncommonDistributions.rNorm(mx, sd),
 UncommonDistributions.rNorm(my, sd)
 }
));
 }
 }
public static void KMeansExample() {
 List<Vector> sampleData = new ArrayList<Vector>();

 generateSamples(sampleData, 400, 1, 1, 3); #1
 generateSamples(sampleData, 300, 1, 0, 0.5);
 generateSamples(sampleData, 300, 0, 2, 0.1);

 List<Vector> randomPoints = RandomSeedGenerator.chooseRandomPoints(
 points, k);
 List<Cluster> clusters = new ArrayList<Cluster>();

 int clusterId = 0;
 for (Vector v : randomPoints) {
 clusters.add(new Cluster(v, clusterId++));
 }

 List<List<Cluster>> finalClusters = KMeansClusterer.clusterPoints(
 points, clusters, new EuclideanDistanceMeasure(), 3, 0.01); #2
 for(Cluster cluster : finalClusters.get(finalClusters.size() - 1)) {
 System.out.println("Cluster id: " + cluster.getId() + " center: "
 + cluster.getCenter().asFormatString()); #3
 }
 }

Cueball

#1 Generate 3 sets of points each with a different center and standard deviation

Licensed to nancy chen <amigo4u2009@gmail.com>

143

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

#2 Run KMeansClusterer using the CosineDistanceMeasure

#3 Read the center of the cluster and print it.

Figure 9.2 K-Means Clustering. We start with k as 3 and try to cluster 3 normal distributions we have generated. The
thin lines denote the clusters estimated in previous iterations, here we can clearly see the clusters shifting

The DisplayKMeans class kept in the “examples” folder of the Mahout code is a great tool to

visualize the algorithm in a 2-dimensional plane. It shows how the clusters shift their position after each

iteration. It is also a great example of how clustering is done using KMeansClusterer. Just run the

DisplayKMeans as a Java Swing application and view the output of the example as given in Figure

9.2.

Note that the K-Means in-memory clustering implementation works with list of Vector objects. The

amount of memory used by this program depends on the total size of all the vectors. The sizes of

clusters are larger as compared to the size of the vectors in the case of sparse vectors or the same size

for dense vectors. As a rule of thumb, assume that number of vectors that could be fit in memory

equals the number of data points + k centers. If the data is huge, we cannot run this implementation.

This is where Map/Reduce shines. Using Map/Reduce infrastructure, we can split this clustering

algorithm to run on multiple machines, with each Mapper getting a subset of the points and nearest

cluster computed in a streaming fashion.

The Map/Reduce version is designed to run on a Hadoop cluster. Nevertheless, it runs quite

efficiently without it. Mahout is compiled against Hadoop code; that means, we could run the same

implementation without a Hadoop cluster directly from within Java or from the command line.

UNDERSTANDING THE K-MEANS CLUSTERING MAP/REDUCE JOB
In Mahout, the Map/Reduce version of K-Means algorithm is instantiated using the KMeansDriver

class. The class has just a single entry point - the runJob method. We have already seen K-Means in

action in Chapter 7. The K-Means clustering algorithm takes the following input parameters:

 The SequenceFile containing the input Vectors

Licensed to nancy chen <amigo4u2009@gmail.com>

144

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 The SequenceFile containing the initial Cluster centers

 The similarity measure to be used. We will use EuclideanDistanceMeasure as the measure
of similarity and experiment with the others later

 The convergenceThreshold, if in an iteration, each centroid does not move a distance more
than this value, no further iterations are done and clustering stops

 The number of iterations to be done. This is a hard limit; the clustering stops if this threshold is
reached

 The number of reducers to be used. This value determines the parallelism in the execution of the

job. One a single machine a value of 1 is set. When we run this algorithm on a Hadoop cluster,
we will show how useful a parameter this is

Mahout algorithms never modify the input directory. This gives us the flexibility to experiment with the

various parameters of the algorithm. From a Java code, we can call the entry point as given in listing

9.2 to initiate clustering of data from the file-system.

Listing 9.2 The K-Means clustering job entry point
KMeansDriver.runJob(inputVectorFilesDirPath, clusterCenterFilesDirPath,
 outputDir, EuclideanDistanceMeasure.class.getName(),
 convergenceThreshold, numIterations, numReducers);

TIP

Mahout reads and writes data using the Hadoop FileSystem class. This provides seamless access to

both the local file system (via java.io) and the distributed file systems like HDFS, S3FS (using internal

Hadoop classes). This way the same code that works on the local system, will also work on the

Hadoop file system on the cluster, provided the path to the Hadoop configuration files are correctly

set in the environment variables. In Mahout, the shell script, bin/mahout finds the Hadoop

configuration files automatically from the environment variable $HADOOP_CONF

We will use the SparseVectorsFromSequenceFile tool to vectorize documents stored in

SequenceFile to vectors. Refer to the vectorization section 8.3 to know more about this tool. Since K-

Means algorithm needs the user to input the k initial centroids, the Map/Reduce version needs us to

input the path on the file system where these k centroids are kept. To generate the centroid file, we can

write a custom logic to select the centroids as we did in the hello world example in listing 7.2 or let

Mahout generate the random k centroids for us as detailed next.

RUNNING K-MEANS JOB USING RANDOM SEED GENERATOR
Let’s run K-Means clustering over the vectors generated from the Reuters-21578 news collection as

described in section 8.3. The collection was converted to a Vector dataset and weighted using Tf-Idf

measure. Reuters’ collection has many topic categories. Therefore, we will set k as 20 and try to see

how K-Means can cluster the broad topics in the collection. For running K-Means clustering, our

mandatory checklist includes:

 The Reuters dataset in the Vector format

 The RandomSeedGenerator that will seed the initial centroids

Licensed to nancy chen <amigo4u2009@gmail.com>

145

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 The SquaredEuclideanDistanceMeasure

 A large value of convergenceThreshold (1.0), since we are using the squared value of the
Euclidean distance measure

 The maxIterations set as 10

 The number of reducer set as 1

 The number of clusters k set as 20

If we use the DictionaryVectorizer to convert text into vectors with more than one reducer,

the dataset of vectors in SequenceFile format are usually found split into multiple chunks.

KMeansDriver reads all the files from the input directory assuming they are SequenceFiles. So,

don’t bother about the split chunks of vectors.

The same is true for the folder having the initial centroids. The centroids may be written in multiple

SequenceFile files and Mahout takes care of reading through all of them. This feature is particularly

useful when having an online clustering system where data is inserted in real time. Instead of

appending to the already existing file, a new chunk can be created independently and written into,

without affecting the algorithm.

CAUTION

KMeansDriver accepts an initial cluster centroid folder as a parameter. It expects a SequenceFile

full of centroids only if the –k parameter is not set. If the parameter is specified, the driver class will

erase the folder and write randomly selected k points to a SequenceFile there.

KMeansDriver is also the main entry point to launch the K-Means clustering of Reuters-21578

news collection. From the Mahout examples directory execute the Mahout launcher from the shell with

“kmeans” as the program name. This driver class will randomly select k cluster centroids using

RandomSeedGenerator and then run the K-Means clustering algorithm:

$ bin/mahout kmeans -i reuters-vectors -c reuters-initial-clusters \
-o reuters-kmeans-clusters \
-m org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure \
-r 1 -d 1.0 -k 20

We are using maven Java execution plug-in to execute K-Means clustering with the required

command line arguments. The argument –k 20 is set implies that the centroids are randomly

generated using RandomSeedGenerator and written to the input clusters folder.

TIP

We can see the complete details of the command line flags and the usage of any Mahout package by

setting the –h or --help command line flag.

In the command-line, the number of reducers –r 1 parameter or the distance measure

SquaredEuclideanDistanceMeasure need not be mentioned as they are set by default. Once the

command is executed, clustering iterations will run one by one. Be patient and wait for the centroids to

Licensed to nancy chen <amigo4u2009@gmail.com>

146

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

converge. An inspection of Hadoop counters printed at the end of a Map/Reduce can tell how many of

the centroids have converged as specified by the threshold:

…

…
INFO: Counters: 14
May 5, 2010 2:52:35 AM org.apache.hadoop.mapred.Counters log
INFO: Clustering
May 5, 2010 2:52:35 AM org.apache.hadoop.mapred.Counters log
INFO: Converged Clusters=6
May 5, 2010 2:52:35 AM org.apache.hadoop.mapred.Counters log
…
…

It takes a couple of minutes to run clustering over the Reuters data with the above parameters. Had

the clustering been done in-memory, it would have finished in under a minute. The same algorithm over

the same data as Map/Reduce job takes a couple of minutes. This increase in timing is caused by the

overhead of the Hadoop library. The library takes does many checks before starting any map or reduce

task. However, once it starts, Hadoop mappers and reducers run at full speed. This overhead slows

down the performance on a single system. On a cluster, the negative effect of this starting delay is

negated by the reduction in processing time due to the parallelism.

Lets get back to the console where K-Means is running. After multiple Map/Reduce jobs, the K-Means

clusters converge and clustering end and the points and cluster mappings are written to the output

folder.

TIP

When we deal with terabytes of data that can’t be fit in memory, the Map/Reduce version is able to

scale to the size by keeping the data on the Hadoop distributed file system and running the algorithm

on large clusters. So, if the data is small, and fits in the RAM, use the in-memory implementation. If

the data grows and reaches a point where it can’t fit it into the memory anymore, we will have to

start using the Map/Reduce version and think of moving the computation to a Hadoop cluster. Check

out the appendix C to find out more on setting up a Hadoop cluster on a Linux box.

 The K-Means clustering implementation creates two types of directories in the output folder. The

clusters directory “clusters-” is formed at the end of each iteration, which has the information about

the clusters like centroid, standard deviation and other things. The clusteredPoints directory, on the

other hand has the final mapping from cluster-id to document-id. This data is generated as per the

cluster information from the output of the last Map/Reduce operation. The directory listing of the output

folder looks something like this:

$ ls –l reuters-kmeans-clusters
drwxr-xr-x 4 user 5000 136 Feb 1 18:56 clusters-0
drwxr-xr-x 4 user 5000 136 Feb 1 18:56 clusters-1
drwxr-xr-x 4 user 5000 136 Feb 1 18:56 clusters-2
…
drwxr-xr-x 4 user 5000 136 Feb 1 18:59 clusteredPoints

Licensed to nancy chen <amigo4u2009@gmail.com>

147

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

The clusters-0 folder is generated after the first iteration, the clusters-1 folder after the

second iteration and so on. Now that the clustering is done, we need a way to inspect the clusters and

see how they are formed. Mahout has a utility called the

org.apache.mahout.utils.clustering.ClusterDumper that can read the output of any

clustering algorithm and show the top terms in each cluster and the documents belonging to that

cluster. To execute cluster dumper run the following:

$ bin/mahout clusterdump -dt sequencefile \
-d reuters-vectors/dictionary.file-* \
-s reuters-kmeans-clusters/clusters-19 -b 0

The Cluster dumper takes dictionary file as the input. This is used to convert the feature ids or

dimensions of the Vector into words. Running ClusterDumper on the output folder corresponding to

the last iteration produces an output similar to the one given below.

Id: 11736:
 Top Terms: debt, banks, brazil, bank, billion, he, payments, billion dlrs,
interest, foreign
Id: 11235:
 Top Terms: amorphous, magnetic, metals, allied signal, 19.39, corrosion, allied,
molecular, mode, electronic components
…
Id: 20073:
 Top Terms: ibm, computers, computer, att, personal, pc, operating system, intel,
machines, dos

The reason why it is different for different runs is that a random seed generator was used to select

the k centroids. The output depends heavily on the selection of these centers. Inspecting the output

above, the cluster with id 11736 has top words like bank, brazil, billion, debt etc. Most of the articles

that belong to this cluster talk about news associated with these words. Note that the cluster with id

20073 talks about computers, ibm, att, pc etc. The news articles associated with that cluster evidently

talks about computers and related companies.

Thus, we have achieved a decent clustering using a distance measure like

SquaredEuclideanDistanceMeasure. However, it took us 15+ iterations to get there. What’s

peculiar about text data is that two documents that are similar in content don’t necessarily need to have

the same length. The Euclidean distance between two similar document of different sizes and about the

same topic is quite large. That is, the Euclidean distance is affected more by the difference in the

number of words between the two documents, and less by the words common to both of them. Visit the

Euclidean distance equation from section 7.4.1 and try to understand its behavior by experimenting with

it.

The reasons stated above makes Euclidean distance measurement a misfit for text documents. Take

look at a cluster in the Cluster dumper output. This shows a cluster that was created because of the

Euclidean distance metric:

Id: 20978:
 Top Terms: said, he, have, market, would, analysts, he said, from,
which, has

Licensed to nancy chen <amigo4u2009@gmail.com>

148

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

This cluster really doesn’t make any sense, especially with words like “said”, “he” or “the”. To really

get good clustering for a given dataset, we have to experiment with the different distance measures

available in Mahout as given in section 7.4 and see how it performs on the data we have

We now know that Cosine and Tanimoto measures work well for text documents since they depend

more on the common words and less by the un-common words. The only way to evaluate that is to try

it on our Reuters dataset and see. Let’s run K-Means with CosineDistanceMeasure:

$ bin/mahout kmeans -i reuters-vectors -c reuters-initial-clusters \
-o reuters-kmeans-clusters \
-m org.apache.mahout.common.distance.CosineDistanceMeasure \
-r 1 -d 0.1 -k 20

Note that convergence threshold was set to 0.1, instead of the default value of 0.5 as cosine

distances lie in between 0 and 1. When the program runs, one peculiar behavior is noticeable: the

clustering speed slowed down a bit due to the extra calculation involved when using cosine distance, but

the whole clustering converges within a few iterations as compared to 15+ used by squared Euclidean

distance measure. This clearly indicates that cosine distance gives a better notion of similarity between

text documents than Euclidean distance. Once clustering finishes, run the ClusterDumper against the

output and inspect some of the top words in each cluster. Some of the interesting clusters are shown

below:

Id: 3475:name:
 Top Terms: iranian, iran, iraq, iraqi, news agency, agency, news, gulf, war,
offensive
Id: 20861:name:
 Top Terms: crude, barrel, oil, postings, crude oil, 50 cts, effective, raises,
bbl, cts

Experiment with Mahout K-Means and find out the combination of DistanceMeasure and

convergenceThreshold that gives the best clustering for the given problem. Try them on various

kinds of data and see how things behave. Explore the various distance measures in Mahout or try and

make one on your own. Though K-Means runs impeccably well using randomly seeded clusters, the final

centroid locations still depend on their initial positions.

K-Means algorithm is an optimization technique. Given the initial conditions, K-Means tries to put the

centers at their optimal position. But it is a greedy optimization, which causes it to find the local

minima. There can be other centroids positions that satisfy the convergence property and some of them

might be better than the result we just got. Though, we may never find the perfect clusters, we can

apply two powerful techniques that will takes us closer to it. They are called Canopy clustering and K-

Means++ and they are discussed in the following section.

9.1.4 Finding the perfect k using approximate clustering
For many real-world clustering problems, the number of clusters is not known beforehand, like the

grouping of books in the library example from Chapter 7. A class of techniques known as approximate

clustering algorithms can estimate the number of clusters as well as the approximate location of the

centroids from a given dataset. Two notable methods that do this are Canopy generation and K-

Means++ algorithm.

Licensed to nancy chen <amigo4u2009@gmail.com>

149

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

An algorithm that finds the number of clusters! Exciting? Well, hold on! They don’t just magically run

and find the solution for the clustering problem. They still have to be told what size clusters to look for

and they will find the number of clusters that have such a size approximately.

REASON FOR HAVING A PERFECT SET OF K CENTROIDS
K-Means algorithm in Mahout generates the SequenceFile containing the k vectors using the

RandomSeedGenerator class as we saw earlier. While random centroid generation is fast, there is no

guarantee that it will generate good estimates for centroids of the k clusters. Centroid estimation

affects the run time of K-Means a lot. Good estimates help the algorithm to converge faster and use less

number of passes over the data. We will see two techniques to select k as well as the centroid vectors

for K-Means – Canopy generation and K-Means++

9.1.5 Seeding K-Means centroids using Canopy generation
Canopy generation also known as Canopy clustering is a fast approximate clustering technique. It’s used

to divide the input set of points into overlapping clusters known as canopies. The word “canopy” by

definition is an enclosure. For us it is nothing but an enclosure of points or just a cluster. Canopy

clustering tries to estimate the approximate cluster centroids or the canopy centroids using two distance

thresholds T1 and T2, with T1>T2.

Canopy clustering strength lies in its ability to create clusters very very fast. It can do this with a

single pass over the data. But its strength is also its weakness. This algorithm may not give accurate

and precise clusters. But, it can give the optimal number of clusters without even specifying the number

of clusters k like in K-Means.

The algorithm uses a fast distance measure and two distance thresholds T1 and T2, with T1>T2. It

begins with a dataset of points and an empty list of canopies. It just iterates over the dataset, creating

canopies in the process. During each iteration, it removes a point from the dataset and adds a canopy

into the list with that point as the center. It loops through the rest of the points one by one. With each

one, it calculates the distances to all the canopy centers in the list. If the distance of the point to any

canopy center is within T1, it is added into that canopy. If the distance is within T2, it is removed from

the list and thereby prevented from forming a new canopy in the subsequent loops. We repeat this

process until the list is empty.

We prevent all points close to an already existing canopy (distance < T2) from being the center of a

new canopy. We really don’t want the formation of another redundant canopy in close proximity. Figure

9.3 illustrates the canopies created using this method. The clusters formed depends only on the choice

of distance thresholds.

UNDERSTANDING CANOPY GENERATION ALGORITHM
The canopy generation algorithm is executed using the CanopyClusterer or the CanopyDriver

class. The former one does an in-memory clustering of the points while the latter is an implementation

of it as Map/Reduce jobs. These jobs can be run like a regular Java program and can read and write

data from the disk. They can also be run on a Hadoop cluster reading and writing data to a distributed

file system.

Licensed to nancy chen <amigo4u2009@gmail.com>

150

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 9.3 Canopy Clustering. If we start with a point (top left) and mark it as part of a canopy, then all the points within
a distance T2 (top right) are removed from the dataset and prevented from becoming a new canopy. The points within
outer circle (bottom-right) are also put in the same canopy but they are allowed to be part of other canopies. This
assigning process is done in a single pass on a Mapper. The Reducer computes average of the centroid (bottom right)
and merges close canopies.

We are going to use the same random point generator function as earlier to create vectors in

scattered in the 2-dimensional plane like in a normal distribution. In listing 9.3, we ran the in-memory

version of Canopy using the CanopyClusterer with the following parameters:

 The input Vector data in the List<Vector> format

 The DistanceMeasure is EuclideanDistanceMeasure

 The value of T1 is 3.0

 The value of T2 is 1.5

Licensed to nancy chen <amigo4u2009@gmail.com>

151

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

9.3 In-memory example of Canopy generation algorithm
public static void CanopyExample() {
 List<Vector> sampleData = new ArrayList<Vector>();

 generateSamples(sampleData, 400, 1, 1, 2); #1
 generateSamples(sampleData, 300, 1, 0, 0.5);
 generateSamples(sampleData, 300, 0, 2, 0.1);

 List<Canopy> canopies = CanopyClusterer.createCanopies(
 points, new EuclideanDistanceMeasure(), 3.0, 1.5);

 for(Canopy canopy : canopies) {
 System.out.println("Canopy id: " + canopy.getId() + " center: "
 + canopy.getCenter().asFormatString()); #3
 }
 }

#1 Generate 3 sets of points with different parameters
#2 Run CanopyClusterer using the EuclideanDistanceMeasure
#3 Read the center of the canopy and print it.

Figure 9.4 An example of in-memory Canopy Generation visualized using the DisplayCanopy class. We start with
T1=3.0 and T2=1.5 and try to cluster the 3 normal distributions that are synthetically generated.

The DisplayCanopy class in the “examples” folder of the Mahout code displays a set of points in a

2-dimensional plane and shows how the canopy generation is done using in-memory

CanopyClusterer. A typical output of the DisplayCanopy is given in the figure 9.4 on the next

page.

Canopy clustering is non parametric with respect to the number of cluster centroids. The number of

centroids formed depends only on the choice of distance measure, T1 and T2. The Canopy in-memory

Licensed to nancy chen <amigo4u2009@gmail.com>

152

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

clustering implementation works with list of Vector objects just like the K-Means implementation. If

the dataset is huge, we can never run this algorithm on a single machine and would have to rely on the

Map/Reduce job. The Map/Reduce version of canopy clustering implementation does a slight

approximation as compared to the in-memory one and thus produces a slightly different set of canopies

for the same input data. This is nothing to be alarmed about when the data is huge. The output canopy

clustering is a great starting point for K-Means, which improves clustering due to the increased precision

of the initial centroids as compared to random selection.

Using the canopies we generated above, we can assign points to the nearest canopy center, thus in

theory cluster the set of points. This is called canopy clustering instead of canopy generation. In

Mahout, the CanopyDriver class does both canopy centroid generation and an optional clustering if

the runClustering parameter is set to true. Next, we will try and run Canopy generation on the

Reuters collection and figure out the value of k.

RUNNING CANOPY GENERATION ALGORITHM TO SELECT K CENTROIDS
We are going to generate Canopy centroids from the Reuters Vector dataset. For the centroid

generation, we will use the distance measure as EuclideanDistanceMeasure and the threshold

values t1=2000 and t2=1500. Remember that Euclidean distance measure gives very large distance

values for sparse document vectors so large values for t1 and t2 are necessary to get meaningful

clusters.

The distance threshold values t1 and t2 that we chose above produces less than 50 centroid points

for the Reuters collection. We estimated these threshold values after running the CanopyDriver

multiple times over the input data. Due to the fast nature of canopy clustering, we are at liberty to

experiment with various parameters and are able to see the results much quicker than we would have

had if we were using expensive techniques like K-Means. To run canopy generation over Reuters;

execute the canopy program using the Mahout launcher as follows:

$bin/mahout canopy -i reuters-vectors -o reuters-canopy-centroids \
-m org.apache.mahout.common.distance.EuclideanDistanceMeasure \
-t1 1500 -t2 2000

Within a minute CanopyDriver will generate the centroids in the output folder. We can inspect the

Canopy centroids using the cluster dumper utility as we did for K-Means earlier in this chapter. Next, we

will use this set of centroids to improve K-Means clustering.

IMPROVING K-MEANS CLUSTERING USING CANOPY CENTERS
We are ready to run the K-Means clustering algorithm using the canopy centroids we just generated. For

that, all we need to do is to set the clusters parameter (-c) to this folder and remove the –k command

line parameter in the KMeansDriver. Remember that, if –k flag is set, the RandomSeedGenerator

will overwrite the canopy centroid folder. We will be using the TanimotoDistanceMeasure in K-

Means to get clusters as follows:

$bin/mahout kmeans -i reuters-vectors -o reuters-kmeans-clusters \
-m org.apache.mahout.common.distance.TanimotoDistanceMeasure \
-c reuters-canopy-centroids -d 0.1 –w

Licensed to nancy chen <amigo4u2009@gmail.com>

153

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

After the clustering is done, use the ClusterDumper to inspect the clusters. Some of them are

listed below:

Id: 21523:name:
 Top Terms:
tones, wheat, grain, said, usda, corn, us, sugar, export, agriculture
Id: 21409:name:
 Top Terms:
stock, share, shares, shareholders, dividend, said, its, common, board, company
Id: 21155:name:
 Top Terms:
oil, effective, crude, raises, prices, barrel, price, cts, said, dlrs
Id: 19658:name:
 Top Terms:
drug, said, aids, inc, company, its, patent, test, products, food
Id: 21323:name:
 Top Terms:
 7-apr-1987, 11, 10, 12, 07, 09, 15, 16, 02, 17

Note the last cluster shown above. While the others seem to be great topic groups, the last one

looks meaningless. However, the clustering would have grouped these as occur together. Another issue

is that words like “its”, “said” etc that occur in these clusters are also useless from a language

standpoint. The algorithm simply doesn’t know that. Therefore, any clustering algorithm can generate

good clustering provided the highest weighted features of the vector represent good features of the

document.

In sections 8.3 and 8.4, we saw how Tf-Idf and normalization gave higher weights to the important

features and lower weight to the stop words, but from time to time such spurious clusters do surface. A

quick and effective way to solve such a problem is to remove these words from ever occurring as

features in the document Vector. In the case study in section 9.1.5, we will show how we fix this using

a custom Lucene Analyzer class.

Canopy clustering is a good approximate clustering technique. However, it suffers from memory

problem. If the distance thresholds are close, too many canopies get generated. This increases RAM

usage in the Mapper and hence might hit out of memory error while running on a large dataset with a

bad set of thresholds. K-Means++ solves the problem in a more elegant manner as we see next.

9.1.6 K-Means++: Clustering reloaded
TODO

We are going to put all the learning we did till now to create a clustering module for a news website. We

choose a news website as it best represents a dynamic system where content needs to be organized

and with very good precision. Clustering can help solve the issues related to such content systems.

9.1.7 Case study: Clustering news articles using K-Means
In this case study we are going to assume that we are in charge of a fictional news aggregation

website called “AllMyNews.com”. A person who comes to the website tries to search using keywords to

find the content they are looking for. If they see an interesting article, they have to use the words in the

article to search for related articles, or they drill down to the news category and explore news articles

there. Usually we rely on human editors to find related items and help categorize and cross-link the

Licensed to nancy chen <amigo4u2009@gmail.com>

154

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

whole website. If articles are coming in at tens of thousands per day, human intervention might prove

too expensive. Enter clustering. Using clustering, we may be able to find related stories automatically

and thus be able to give the user a better browsing experience.

Figure 9.5 An example of related-articles functionality taken from the Google News website. The links to similar stories
within the cluster are shown at the bottom in bold. The top related articles are shown as links above that.

To minimize the human intervention we are going to use K-Means clustering to implement such a

feature. Look at figure 9.5 for an example of what the feature would look like in practice. For news story

on the website, we will show to the user, the list of all related news articles.

Lets see how clustering solves this problem. For any given article, we can store the cluster in which

the articles reside. When a user requests for articles related to the one he is reading, we will pick out all

the articles in the cluster and sort them based on the distance to the given article and present it to the

user. Though this is a great starting design for a news-clustering system. It just doesn’t solve all issues

completely. Lets list down some real life problems one might face in such a dynamics:

 There are articles coming in every minute and the website needs to refresh its clusters and
indexes.

 There might be multiple stories breaking out at the same time so we would require separate
clusters for them, thus we need to add more centroids incrementally every time this happens.

 The quality of the text content is questionable as there are multiple sources feeding in the data.
So, we need to have mechanisms to cleanup the content when doing feature selection.

We start with an efficient K-Means clustering implementation to cluster news articles offline. Here

the word “offline” means we will write the documents into SequenceFiles and start the clustering as a

backend process. In the coming chapters, we will modify this case study add various advanced

techniques using Mahout and help solve issues related to speed and quality.

Finally at the end of the clustering section, we will show a working, tuned and scalable clustering

framework for a live website like “AllMyNews.com” that can be adapted for different applications. We will

not go into details of how storage of news data is done. We will assume for simplicity document storage

and retrieval blocks can’t be replaced easily by database read/write code. The listing 9.4 shows the code

that clusters news articles from SequenceFiles and listing 9.5 shows a custom Lucene Analyzer

class, which prunes away non-alphabetic features from the data.

9.4 News clustering using Canopy generation and K-Means Clustering
public class NewsKMeansClustering {
 public static void main(String args[]) throws Exception {

Licensed to nancy chen <amigo4u2009@gmail.com>

155

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 int minSupport = 2;
 int minDf = 5;
 int maxDFPercent = 80;
 int maxNGramSize = 2;
 int minLLRValue = 50;
 int reduceTasks = 1;
 int chunkSize = 200;
 int norm = 2;
 boolean sequentialAccessOutput = true;

 String inputDir = "inputDir";
 File inputDirFile = new File(inputDir);
 if (!inputDirFile.exists()) {
 inputDirFile.mkdir();
 }
 Configuration conf = new Configuration();
 FileSystem fs = FileSystem.get(conf);

 SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
 new Path(inputDir, "documents.seq"), Text.class, Text.class);

 for (Document d : Database) { #1
 writer.append(new Text(d.getID()), new Text(d.contents()));
 }

 writer.close();
 String outputDir = "newsClusters";
 HadoopUtil.overwriteOutput(outputDir);

 String tokenizedPath = outputDir +
 DocumentProcessor.TOKENIZED_DOCUMENT_OUTPUT_FOLDER;
 MyAnalyzer analyzer = new MyAnalyzer(); #2
 DocumentProcessor.tokenizeDocuments(inputDir, analyzer.getClass()
 .asSubclass(Analyzer.class), tokenizedPath); #3

 DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath,
 outputDir, minSupport, maxNGramSize, minLLRValue, reduceTasks,
 chunkSize, sequentialAccessOutput);
 TFIDFConverter.processTfIdf(
 outputDir + DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER,
 outputDir + TFIDFConverter.TFIDF_OUTPUT_FOLDER, chunkSize, minDf,
 maxDFPercent, norm, sequentialAccessOutput); #4

 String vectorsFolder = outputDir + TFIDFConverter.TFIDF_OUTPUT_FOLDER
 + "/vectors";
 String canopyCentroids = outputDir + "/canopy-centroids";
 String clusterOutput = outputDir + "/clusters";

 CanopyDriver.runJob(vectorsFolder, canopyCentroids, #5
 ManhattanDistanceMeasure.class.getName(), 2000, 1800);
 KMeansDriver.runJob(vectorsFolder, canopyCentroids, clusterOutput,
 TanimotoDistanceMeasure.class.getName(), 0.01, 10, 1); #6

 SequenceFile.Reader reader = new SequenceFile.Reader(fs, new Path(
 clusterOutput + "/points/part-00000"), conf);

 Text key = new Text();

Licensed to nancy chen <amigo4u2009@gmail.com>

156

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 Text value = new Text();
 while (reader.next(key, value)) { #7
 System.out.println(key.toString() + " belongs to cluster "
 + value.toString());
 // Write code here to save the cluster mapping to the database
 }
 reader.close();
 }
}

#1 Replace with the code that fetches data from a DB/File
#2 Add a custom Lucene Analyzer - MyAnalyzer
#3 Tokenize document for the DictionaryVectorizer
#4 Calculate Tf-Idf vectors from the tokenized documents using bigrams
#5 Run canopy centroid generation job to get cluster centroids
#6 Run K-Means algorithm to cluster the documents
#7 Read the mapping table of Vector to Cluster and save them

9.5 A custom Lucene Analyzer that filters non alphabetic tokens
public class MyAnalyzer extends Analyzer {

 private final CharArraySet stopSet;
 private final Pattern alphabets = Pattern.compile("[a-z]+");

 public MyAnalyzer() {
 stopSet = (CharArraySet) StopFilter.makeStopSet(StopAnalyzer.ENGLISH_STOP_WORDS);
 }

 public MyAnalyzer(CharArraySet stopSet) {
 this.stopSet = stopSet;
 }

 @Override
 public TokenStream tokenStream(String fieldName, Reader reader) {
 TokenStream result = new StandardTokenizer(Version.LUCENE_CURRENT, reader);
 result = new StandardFilter(result);
 result = new LowerCaseFilter(result);
 result = new StopFilter(true, result, stopSet); #1

 TermAttribute termAtt = (TermAttribute) result.addAttribute(TermAttribute.class);
 StringBuilder buf = new StringBuilder();
 try {
 while (result.incrementToken()) {
 if (termAtt.termLength() < 3) continue; #2
 String word = new String(termAtt.termBuffer(), 0, termAtt.termLength());
 Matcher m = alphabets.matcher(word);

 if (m.matches()) { #3
 buf.append(word).append(" ");
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

Licensed to nancy chen <amigo4u2009@gmail.com>

157

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 return new WhiteSpaceTokenizer(new StringReader(buf.toString()));
 }
}

#1 Use couple of Lucene filters
#2 Remove word having a length of three characters or less
#3 Consider only words made of alphabets

The NewsKMeansClustering example is straightforward. The documents are fetched and written

to the input directory. From these, we create vectors from unigrams and bigrams that contain only

alphabets. Using the generated Vectors as input, we run the Canopy centroid generation job to create

the seed set of centroids for K-Means clustering algorithm. Finally, at the end of K-Means clustering, we

read the output and save it to the database. The next section looks at the other algorithms in Mahout

that takes us further than K-Means.

9.2 Beyond K-Means: An overview of clustering techniques
K-Means produces very rigid clustering, for example a news article, which talks about influence of

politics in biotechnology, could be clustered either along with the politics document or with the

biotechnology document but not with both. Since we are trying to tune the related articles feature, we

might also need the overlapping or fuzzy information. We also might need to model the point

distribution of our data. This is not something K-Means was designed to do. K-Means is just one type of

clustering. There are many other clustering algorithms is designed on different principle, which we will

see next.

9.2.1 Different kinds of clustering problems
Recall that clustering is simply a process of putting things into groups. To do more than just this

simple grouping, we need to first understand the different kinds of problems in clustering. These

problems and their solutions fall mainly into four categories as follows:

Figure 9.6 Exclusive clustering v/s Overlapping clustering with two centers. In the former, squares and triangles have

Licensed to nancy chen <amigo4u2009@gmail.com>

158

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

their own cluster and each one belong only to one cluster. While in overlapping clustering, some shapes like pentagon
can belong to both the clusters with some probability so they are part of both clusters, instead of having a cluster of
their own.

EXCLUSIVE CLUSTERING
In exclusive clustering, an item belongs exclusively to one cluster, not several. Recall the librarian

example in Chapter 7, where we associated a book like Harry Potter to the cluster containing books of

the fiction genre. There, Harry Potter exclusively belonged to the fiction cluster. K-Means as we saw

does this exclusive clustering. So if the clustering problem demands this behavior, K-Means will usually

do the trick.

OVERLAPPING CLUSTERING
What If we wanted to do non-exclusive clustering: that is, put Harry Potter not only in fiction but

also in a “young adult” cluster as well as under “fantasy”. An overlapping clustering algorithm like Fuzzy

K-Means achieves this easily. Moreover, Fuzzy K-Means also tells the degree with which an object is

associated with a cluster. So Harry potter might be inclined more towards the “fantasy” cluster than the

“young adult” cluster. The difference between exclusive and overlapping clustering is illustrated in

figure 9.6.

HIERARCHICAL CLUSTERING
Now, assume a situation where we have two clusters of books, one on “fantasy” and the other on

“space travel”. Harry Potter is in the cluster of fantasy books. However, these two clusters, “space

travel” and “fantasy”, could be visualized as sub-clusters of “fiction”. Hence, we can construct the

“fiction” cluster by merging these and other similar clusters. “fiction” and “fantasy” has a parent child

hierarchy, and hence the name Hierarchical clustering.

Similarly, we could keep grouping clusters into bigger and bigger ones. At a certain point, the

clusters would be so large and so generic that they’d be useless as groupings. Nevertheless, this is a

useful method of clustering: merging small clusters until it becomes undesirable to do so. Methods that

uncover such a systematic tree-like hierarchy from a given data collection are called Hierarchical-

clustering algorithms.

9.7 Hierarchical clustering. A bigger cluster groups two or more smaller clusters in the form of a tree like hierarchy.

Licensed to nancy chen <amigo4u2009@gmail.com>

159

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Recall the librarian example in chapter 7. We did a crude form of hierarchical clustering when we simply stacked books
based the similarity we felt when we read them.

PROBABILISTIC CLUSTERING
A probabilistic model is usually a distribution of a set of points in the n-dimensional plane, and

usually they have a characteristic shape. There are certain probabilistic models that fit known data

patterns. Therefore, such clustering algorithms try to fit a probabilistic model over a dataset and try to

adjust the model parameter to correctly fit the data. Mostly such correct fit never happens. Instead,

these algorithms give a percentage match or a probability value, which tells how much a fit the model is

to the cluster.

9.8 A simplified view of probabilistic clustering. The initial set of points (left). On the right: the first set of points matches
an elongated elliptical model where as the second one is more symmetric.

To explain how this fitting happens, let’s look at a 2-d example in Figure 9.8. Say, we somehow

know that all points in a plane are distributed in various regions with an elliptical shape. However, we

don’t know the center and radius or axes of these regions. We will choose an elliptical model and try to

fit it to the data. We will move, stretch or contract each ellipse to best fit a region. We will do this for all

the regions. This is called model-based clustering. A typical example of this type is the Dirichlet Process

clustering algorithm, which does fitting based on a model provided by the user. We will see this

clustering algorithm in action in section 9.4 of this chapter. Before we get there, we need to understand

how different clustering algorithms are grouped based on their strategy.

9.2.1 Different clustering approaches
Different algorithms in clustering take different approaches. We can look at these approaches in a

categorical manner as follows:

 Fixed number of centers

 Bottom-up approach

 Top-down approach

Licensed to nancy chen <amigo4u2009@gmail.com>

160

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

There are many other clustering algorithms that have other unique ways of clustering. You may never

encounter them in Mahout, as at the time of writing they are not scalable on large datasets. Instead, we

will explore the different algorithms based on the above three approaches, next.

FIXED NUMBER OF CENTERS
These methods fix the number of clusters ahead of time. The count of clusters is typically denoted by

the letter k, which originated from the k of the K-Means algorithm. The idea is to start with k and to

modify these k cluster centers to better fit the data. Once converged, the points in the dataset are

assigned to the centroid closest to it.

Fuzzy K-Means is another example of an algorithm, which requires a fixed number of clusters. Unlike

K-Means, which does exclusive clustering, Fuzzy K-Means does overlapping clustering.

Figure 9.9 Bottom up clustering approach. After every iteration, the clusters are merged to produce larger and larger
clusters till it is infeasible to merge based on the given distance measure.

BOTTOM-UP APPROACH: FROM POINTS TO CLUSTERS VIA GROUPING
When we have a set of points in n-dimensions, we can do two things. We can assume that all points

belong to a single cluster and start dividing the cluster into smaller clusters, or we can assume that each

of the data point begins in its own cluster and start grouping them iteratively. The former is called a

top-down approach and the latter is called a bottom-up approach. The bottom-up clustering algorithms

work as follows:

From a set of points in an n-dimensional space, the algorithm finds the pairs of points close to each

other and merges them into one cluster. This merge is done only if the distance between them is below

a certain threshold value. If not, those points are left alone. We repeat this process of merging the

clusters using the distance measure till nothing can be merged anymore.

Licensed to nancy chen <amigo4u2009@gmail.com>

161

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

TOP-DOWN APPROACH: SPLITTING THE GIANT CLUSTER
We start with all points belonging to a single cluster i.e. a giant cluster. Then we divide this giant cluster

into smaller clusters. This is known as a top-down approach. The aim here is to find the best possible

way to split this giant cluster into two smaller clusters. These clusters are divided repeatedly until we

get clusters, which are meaningful. This is based on some distance measure criterion.

Figure 9.10 Top down clustering approach. During each iteration, the clusters are divided into two by finding the best
splitting till we get the clusters we desire.

Though this is very straightforward, finding the best possible split for a set of n-dimensional points is

not too easy. Moreover, most of these algorithms cannot be easily reduced into the map-reduce form

and so Mahout doesn’t have them now. An example of a top down algorithm is Spectral clustering. In

Spectral clustering, the splitting is decided by finding the line/plane that cuts the data into two sets with

a larger margin between the two sets.

The beauty of top down and bottom up approaches are that they don’t require the user to input the

cluster size. This means that in a dataset where we have no idea about the distribution of the points,

both types of algorithms output clusters based solely on the similarity metric. This works quite well in

many applications. These approaches are still being researched upon. Even though Mahout has no

implementations of these methods, other specialized algorithms implemented in Mahout can run as

Map/Reduce jobs without specifying the number of clusters as explained below.

The lack of hierarchical clustering algorithms in Map/Reduce is easily circumvented by the smart use

of K-Means, Fuzzy K-Means, and Dirichlet clustering. To get the hierarchy, start with small number of

clusters (k) and repeat clustering with increasing values of k. Alternately, we can start with large

number of centroids and start clustering the cluster centroids with decreasing value of k. This mimics

Licensed to nancy chen <amigo4u2009@gmail.com>

162

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

the hierarchical clustering behavior while making full use of the scalable nature of Mahout

implementations.

The next section deals with the Fuzzy K-Means algorithm in detail. We will be using it to improve our

related articles implementation for our news website allmynews.com.

9.3 Fuzzy K-Means clustering
As the name says, this algorithm does a fuzzy form of K-Means clustering. Instead of exclusive

clustering in K-Means, Fuzzy K-Means tries to generate overlapping clusters from the dataset. In the

academic community, it’s also known by the name Fuzzy C-Means algorithm. We can think of it as an

extension of K-Means. K-Means tries to find the hard clusters (a point belonging to one cluster) where

as, Fuzzy K-Means discovers the soft clusters. In a soft cluster, any point can belong to more than one

cluster with a certain affinity value towards each. This affinity is proportional to the distance of point to

the centroid of the cluster. Like K-Means, Fuzzy K-Means works on those objects that can be

represented in n-dimensional vector space and has a distance measure defined.

9.3.1 Running Fuzzy K-Means clustering
The algorithm above is available in FuzzyKMeansClusterer or the FuzzyKMeansDriver class.

Like others, the former is an in-memory implementation and the latter Map/Reduce. We are going to

use the same random point generator function we used earlier in order to create the points scattered in

the 2-dimensional plane. In listing 9.6, we ran the in-memory version using the

FuzzyKMeansClusterer with the following parameters:

 The input Vector data in the List<Vector> format.

 The DistanceMeasure is EuclideanDistanceMeasure.

 The threshold of convergence is 0.01

 The number of clusters k is 3

 The fuzziness parameter m is 3. This parameter will be explained later in section 9.3.2

9.6 In-memory clustering example of Fuzzy K-Means clustering
public static void FuzzyKMeansExample() {
 List<Vector> sampleData = new ArrayList<Vector>();

 generateSamples(sampleData, 400, 1, 1, 3); #1
 generateSamples(sampleData, 300, 1, 0, 0.5);
 generateSamples(sampleData, 300, 0, 2, 0.1);

 List<Vector> randomPoints = RandomSeedGenerator.chooseRandomPoints(
 points, k);
 List<SoftCluster> clusters = new ArrayList<SoftCluster>();

 int clusterId = 0;
 for (Vector v : randomPoints) {
 clusters.add(new SoftCluster(v, clusterId++));
 }

 List<List<SoftCluster>> finalClusters = FuzzyKMeansClusterer
.clusterPoints(points, clusters, new EuclideanDistanceMeasure(),
 0.01, 3, 10); #2

Licensed to nancy chen <amigo4u2009@gmail.com>

163

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 for(SoftCluster cluster : finalClusters.get(finalClusters.size() - 1)) {
 System.out.println("Fuzzy Cluster id: " + cluster.getId()
 + " center: " + cluster.getCenter().asFormatString()); #3
 }

 }

#1 Generate 3 sets of points using different parameters
#2 Run FuzzyKMeansClusterer
#3 Read the center of the fuzzy-clusters and print it.

Figure 9.11 Fuzzy K-Means clustering. The clusters look like they are overlapping each other and the degree of overlap
is decided by the fuzziness parameter.

The DisplayFuzzyKMeans class in the “examples” folder of the Mahout code is a good tool to visualize

this algorithm on a 2-dimensional plane. DisplayFuzzyKMeans runs as a Java swing application and

produces an output as given in the figure 9.11.

MAP/REDUCE IMPLEMENTATION OF FUZZY K-MEANS
Before running the Map/Reduce implementation lets create a checklist for running Fuzzy K-Means

clustering against the Reuters dataset like we did for K-Means. We have:

 The dataset in the Vector format.

 The RandomSeedGenerator to seed the initial k clusters.

 The distance measure is SquaredEuclideanDistanceMeasure.

 A large value of convergenceThreshold –d 1.0, as we are using the squared value of the
distance measure.

 The maxIterations is the default value of –x 10

Licensed to nancy chen <amigo4u2009@gmail.com>

164

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 The coefficient of normalization or the fuzziness factor, a value greater than 1.0, which will be
explained in the section 9.3.2, –m

To run the Fuzzy K-Means clustering over the input data, use the Mahout launcher using the

“fkmeans” program name as follows:

$bin/mahout fkmeans
-i reuters-vectors -c reuters-fkmeans-centroids
-o reuters-fkmeans-clusters -d 1.0 -k 21 -m 2 -w
-dm org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure

Like K-Means, FuzzyKMeansDriver will automatically run the RandomSeedGenerator if the

number of clusters (k) flag is set. Once the random centroids are generated, Fuzzy K-Means clustering

will use it as the input set of k centroids. The algorithm runs multiple iterations over the dataset until

the centroids converges, each time creating the output in the folder cluster-*. Finally, it runs another

job, which generates the probabilities of a point belonging to a particular cluster based on the distance

measure and the fuzziness parameter (m).

Before we get into details of the fuzziness parameter, it’s a good idea to inspect the clusters using

the ClusterDumper tool. ClusterDumper shows the top words of the cluster as per the centroid. To

get the actual mapping of points to the clusters, we need to read the SequenceFiles in the points/

folder. Each entry in the sequence file has a key, which is the identifier of the vector, and a value, which

is the list of cluster centroids with an associated numerical value, which tell us how well the point,

belongs to that particular centroid.

9.3.2 How fuzzy is too fuzzy
Fuzzy K-Means has a parameter m called the fuzziness factor. Like the K-Means Fuzzy K-Means loops

over the dataset and instead of assigning vectors to the nearest centroids, it calculates the degree of

association of the point to each of the clusters. Say for a vector (V) if d1, d2, … , dk are the distances

towards each of the k cluster centroids. The degree of association (u1) of vector (V) to the first cluster

(C1) is calculated as

u1 = 1/((d1/d1)^(2/(m-1))+ (d1/d2)^(2/(m-1)) + … + (d1/dk)^(2/(m-1)))

Similarly, we can calculate the degree of belonging to other clusters by replacing d1 in the

numerators of the denominator expression by d2, d3 and so on. It’s clear from the expression that m

should be greater than 1, or else the denominator of the fraction becomes zero and things break down.

If we choose a value of m as 2, we will see that all degrees of association for any point sums up to

one. If on the other hand, m comes very close to 1, like 1.000001, more importance would be given to

that centroid closest to the vector. So, the Fuzzy K-Means algorithm starts behaving more like K-Means

algorithm, as m gets closer to 1. If m increases, the fuzziness of the algorithm increases and we begin to

see more and more overlap.

The Fuzzy-K-Means algorithm is also found to converge better and faster than a standard K-Means

algorithm.

Licensed to nancy chen <amigo4u2009@gmail.com>

165

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

9.3.3 Case study: clustering news articles using Fuzzy K-Means
The related articles functionality will certainly be richer with knowledge of partial overlap. The partial

score will help rank the related articles by their relatedness to the cluster. In listing 9.7, we will modify

our case study example to use Fuzzy K-Means algorithm and retrieve the fuzzy cluster membership

information.

9.7 News clustering using Fuzzy K-Means clustering
public class NewsFuzzyKMeansClustering {
 public static void main(String args[]) throws Exception {
 …
 …
 …
 float fuzzificationFactor = 2.0f;
 String vectorsFolder = outputDir + TFIDFConverter.TFIDF_OUTPUT_FOLDER
 + "/vectors";
 String canopyCentroids = outputDir + "/canopy-centroids";
 String clusterOutput = outputDir + "/clusters";

 CanopyDriver.runJob(vectorsFolder, canopyCentroids, #1
 ManhattanDistanceMeasure.class.getName(), 2000, 1800);
 FuzzyMeansDriver.runJob(vectorsFolder, canopyCentroids, clusterOutput,
 TanimotoDistanceMeasure.class.getName(), 0.01, 10, 1,
 fuzzificationFactor); #2

 SequenceFile.Reader reader = new SequenceFile.Reader(fs, new Path(
 clusterOutput + "/points/part-00000"), conf);

 Text key = new Text();
 Text value = new Text();
 while (reader.next(key, value)) { #3
 for (int i = 0; i < value.getClusters().length; i++) {
 System.out.println(key.toString() + " belongs to cluster " #4
 + value.getClusters()[i].getIdentifier() + " with probability "
 + value.getProbabilities()[i]);
 }
 // Write code here to save the cluster mapping to our database
 }
 reader.close();
 }
}

#1 Run canopy generation job to get cluster centroids
#2 Run Fuzzy K-Means to cluster the documents
#3 Read the mapping table of vector to Fuzzy K-Means output
#4 Print the clusters and the probabilities of association

They Fuzzy K-Means algorithm gave us a way to do a much needed refinement for our related

articles code. Now we know, by what degree a point belongs to a cluster. Using this information we can

find top clusters the point belongs to and use the degree to find the weighted score of articles. This way

Licensed to nancy chen <amigo4u2009@gmail.com>

166

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

we negate the strictness of overlapping clustering and give better related-articles for documents lying

on the boundaries of a cluster.

Next, let’s learn another clustering algorithm in Mahout. Unlike the ones we have seen until now, this

one produces a lot of information about the cluster and how points are distributed within it. It is called

Dirichlet process clustering.

9.4 Model based Clustering
The complexities of clustering algorithms have increased progressively in this chapter. We started

with K-Means, a very fast clustering algorithm. Then, we saw how we captured partial clustering

membership using Fuzzy K-Means. We also learned to optimize the clustering using centroid generation

algorithms like Canopy clustering and K-Means++. What more do we want to know about these

clusters? How do we understand the structures within the data better? To do this, we may need a

method that is completely different from the algorithms we described above. Model based clustering

methods help alleviate these problems. Before learning what model based clustering is, we need to see

some of the issues faced by K-Means and other related algorithms.

9.4.1 Fallacies of K-Means
Say we wanted to cluster our dataset into some k clusters. We have learned how we can run K-

Means and get the clusters quickly. K-Means works well because it can always divide clusters easily

using a linear distance. What if we knew that the clusters are based on a normal distribution and are

mixed together and overlapping each other? Can we use this information to improve clustering using K-

Means? Here, we might be better off with a Fuzzy K-Means clustering.

What if the clusters themselves are not in a normal distribution? What if the clusters are having an

ovoid shape? Neither K-Means nor Fuzzy K-Means knows how to use this information to improve the

clustering. Before we answer these questions, let’s first see an example where K-Means clustering fails

to describe a simple distribution of data.

ASYMMETRICAL NORMAL DISTRIBUTION
We are going to run K-Means clustering using points generated from an asymmetrical normal

distribution. What it means is, instead of the points being scattered in 2-dimensions around a point in a

circular area, we are going to make the point-generator generate clusters of points having different

standard deviations in different directions. This creates an ellipsoidal area where the points are

concentrated. We will now run the in-memory K-Means implementation over this data.

Figure 9.12 shows the ellipsoidal or asymmetric distribution of points and the clusters generated by

K-Means. It is clear that K-Means is not powerful enough to figure out the distribution of these points.

Licensed to nancy chen <amigo4u2009@gmail.com>

167

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 9.12 Running K-Means clustering over asymmetric normal distribution of points. The points are scattered in an
oval -shaped area instead of a circular one. Clearly K-Means is not a perfect fit for the data and these clusters don’t
make any.

Another issue with K-Means is its requirement of the k number of seed centroids. Most of the time,

we end up over-estimating this number. Finding the optimal value of k is not an easy task unless there

is a clear idea about the data, which happens very rarely. Even by doing canopy generation or K-

Means++, we need to tune the distance measure to make these algorithms improve the estimate of k.

What if there was a better way to find the number of clusters? That’s something where model-based

clustering proves to be useful.

ISSUES WITH CLUSTERING REAL WORLD DATA
Think of the following real-world clustering problem where we want to cluster a population of people

based on their movie preferences to find like-minded people. We can estimate the number of clusters in

such a population by counting different genre of movies.

Some of the clusters that we find here are: people who like action movies, people who like romantic

movies, people who like comedy and so on. This is not a very good estimation as there are tons of

exceptions. For example: there are clusters of people who like only gangster movies, not other action

movies. They form a sub cluster under the action cluster. With such a complex mixing of clusters, we

never get the information of a small cluster since a bigger cluster always subsumes it. The only way to

improve this situation is to somehow understand that movie preferences of a population of people are

hierarchical in nature.

If we had known this earlier, we would have used a hierarchical clustering method to cluster the

people better. But those methods cannot capture the overlap. So all the clustering algorithms we have

seen before does not capture the hierarchy and the overlap at the same time. How can we use a

Licensed to nancy chen <amigo4u2009@gmail.com>

168

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

method to uncover all these information? That’s also something that is tackled by the model-based

clustering.

9.4.3 Dirichlet processes clustering
Mahout has a model based clustering algorithm known by the name Dirichlet processes clustering.

The word “Dirichlet” refers to a family of probability distributions defined by a German mathematician

Johann Peter Gustav Lejeune Dirichlet. The Dirichlet process clustering performs something known as

mixture modeling using calculations based on the Dirichlet distribution. The whole process might sound

very complicated without a deeper understanding of Dirichlet distributions, but the idea is very simple.

Say, we knew that our data-points are concentrated in an area like a circle and well distributed

within it and we have a model that explains this behavior. We test whether our data fits the model by

reading through our vectors and calculating the probability of the model being a fit to the data. It is like

saying that the region of concentration of points looks more like a circular model, with some greater

degree of confidence. It could also say that the region looks less like a triangle, another model, due to

lesser probability of fit of the data with the triangle. If we find a fit, we know the structure of our data.

Note, that circles and triangles are used here as a tool for visualizing this algorithm. They are not be

mistaken for a probabilistic model on which this algorithm works.

Dirichlet process clustering is implemented as a Bayesian clustering algorithm in Mahout. What that

means is that the algorithm doesn’t just want to give one explanation of the data, rather it wants to

give lots of explanations. This is like saying, the region A is like a circle, the region B is like a triangle,

together region A and region B is like a polygon and so on. In reality, these regions are statistical

distributions like the normal distribution that was seen earlier in the chapter.

Figure 9.13 Dirichlet clustering. The models are made to fit the given dataset as best as it can to describe it. The right
model will fit the data better and tells the number of clusters in the dataset which correlates with the model.

Licensed to nancy chen <amigo4u2009@gmail.com>

169

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

We will come to various model distributions a little later in this section, but a full discourse on them

are out of scope of this book. Next, Lets understand how Dirichlet implementation in Mahout works

UNDERSTANDING DIRICHLET PROCESS CLUSTERING ALGORITHM
The Dirichlet process clustering starts with a dataset of points and a ModelDistribution. Think of

ModelDistribution as a class that generates different models. We create an empty model and try to

assign points to it. When this happens, the model grows or shrinks its parameters in a crude manner to

try and fit the data. One it does this for all points, it re-estimates the parameters of the model precisely

using all the points and the partial probability of the point belonging to the model.

At the end of each pass, we get some number of samples that contains the probabilities, models and

assignment of points to models. These samples could be regarded as a cluster and they give us

information about the models and its parameters. They also give us information about the shape and

size of the model. Moreover, by examining the number of models in each sample that actually has some

points assigned to it, we can get information about how many models (clusters) our the data supports.

Also, by examining how often two points are assigned to the same model, we can get an approximate

measure of how these points are explained by the same model. Such soft-membership information is a

side product of using model-based clustering. Dirichlet process clustering is able to capture the partial

probabilities of points towards various models.

9.4.4 Running a model based clustering example
The Dirichlet process based clustering is implemented in the DirichletClusterer class as in-

memory and in DirichletDriver as a Map/Reduce job. We are going to use the generateSamples

function we saw earlier in this chapter to create our vectors in a random fashion. Note that the Dirichlet

clustering implementation is generic enough to put in any type of distribution and any data type. The

Model implementations in Mahout use the VectorWritable type; hence, we will be using that as the

default type in our clustering code. We are going to run Dirichlet process clustering using the following

parameters:

 The input Vector data in the List<VectorWritable> format.

 The NormalModelDistribution as the model distribution we are trying to fit our data on.

 The alpha value of the Dirichlet distribution 1.0

 The number of models to start with numModels is 10

 The thin and burn intervals as 2 and 2.

These points will be scattered around a specified center point like the normal distribution. The code

snippet is shown below in listing 9.8.

9.8 Dirichlet clustering using normal distribution
List<VectorWritable> sampleData = new ArrayList<VectorWritable>();

generateSamples(sampleData, 400, 1, 1, 3); #1
generateSamples(sampleData, 300, 1, 0, 0.5);
generateSamples(sampleData, 300, 0, 2, 0.1);

DirichletClusterer<VectorWritable> dc =
 new DirichletClusterer<VectorWritable>(

Licensed to nancy chen <amigo4u2009@gmail.com>

170

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

 sampleData,
 new NormalModelDistribution(
 new VectorWritable(new DenseVector(2))),
 1.0, 10, 2, 2);
List<Model<VectorWritable>[]> result = dc.cluster(20); #2

 #1 Generate 3 sets of points each with different parameters
 #2 Run Dirichlet Clusterer using the NormalModelDistribution

In the above example, we generated some sample points using a normal distribution and tried to fit

the normal model distribution over our data. The parameters of the algorithm decide the speed and

quality of convergence.

Here, alpha is a smoothing parameter. It allows a smooth transition of the models before and after

the re-sampling happens. A higher value makes the transition slower and so clustering would try and

over-fit the models. Lower value causes the clustering to merge models more quickly and hence tries to

under-fit the model.

Figure 9.14 Dirichlet clustering with Normal Distribution using the DisplayNDirichlet class in Mahout examples folder

 The thin and the burn intervals are used to decrease the memory usage of the clustering. The

burn parameter decides the number of iterations to complete before saving the first set of models for

the dataset. The thin parameter decides the number of iterations to skip between saving such a Model

configuration.

The motivation of having these parameters is that we generally do many iterations to reach

convergence and the initial states are not worth exploring. During the initial stages, the counts of

Models are extremely high and they provide no real value for us. So, we skip (thin/burn) them to

save memory. The final state achieved using the DisplayNDirichlet clustering example is given in

Licensed to nancy chen <amigo4u2009@gmail.com>

171

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

Figure 9.14. It’s found in the examples folder of Mahout along with examples to plenty other model

distributions and their clustering.

The kind of clusters we got here is different from the output of K-Means clustering we got in Section

9.2. Dirichlet process clustering did something that K-Means could not do which was to actually identify

the 3 clusters exactly the way we generated it. Any other algorithm would have just tried to cluster

things into overlapping groups or hierarchical groups.

This is just the tip of the iceberg. To show the awesome power of Model based clustering, we are

going to repeat this example based on something more difficult than a normal distribution.

ASYMMETRIC NORMAL DISTRIBUTION
 Normal distribution is asymmetrical when the standard deviations of points along different

dimensions are different. This gives it an ellipsoidal shape. When we ran K-Means clustering on this

distribution in section 9.4.1, we saw how it broke down miserably. Now we will attempt to cluster the

same set of points using Dirichlet clustering with another model distribution class, the

AsymmetricSampledNormalDistribution. We will run Dirichlet process clustering using the

asymmetric normal model on the set of 2-d points that has different standard deviation along the x and

y directions. The output of the clustering is shown in Figure 9.15.

Figure 9.15 Dirichlet clustering with Asymmetrical Normal Distribution using the Display2dASNDirichlet class. The thick
line denotes the final state and the thin lines are the states in previous iterations

Even though the number of clusters formed seems to have increased, model based clustering was

able to find the asymmetric model and fit them to the data much better than any of the other

algorithms. A better value of alpha might have improved this. The other model-distributions

implemented in Mahout are L1ModelDistribution and SampledNormalModelDisribution. A

discussion on them is too advanced for a book that gives an introduction clustering. Mahout

Licensed to nancy chen <amigo4u2009@gmail.com>

172

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

documentation will explain their usage more. Next, we will try to launch the Map/Reduce version of

Dirichlet clustering.

MAP/REDUCE VERSION OF DIRICHLET CLUSTERING
Like other implementations, in Mahout, Dirichlet clustering is also focused on scaling with huge

datasets. The Map/Reduce version of Dirichlet clustering is implemented in the DirichletDriver

class. The Dirichlet job could be run from the command line on the Reuters dataset. Lets get to our

checklist for running a Dirichlet clustering Map/Reduce job:

 The Reuters dataset in the Vector format

 The model distribution class –d defaults to NormalModelDistribution

 The model distribution prototype Vector class. The class that becomes the type for all vectors
created in the job –p defaults to SequentialAccessSparseVector

 The alpha0 value for the distribution, -m 1.0

 The number of clusters to start the clustering with –k 60.

 The number of iterations to run the algorithm –x 10

Launch the algorithm over the dataset using the Mahout launcher with program name as “dirichlet” as

follows:

bin/mahout dirichlet
-i examples/reuters-vectors/
-o reuters-dirichlet-clusters -k 60 -x 10 -m 1.0
-d org.apache.mahout.clustering.dirichlet.models.NormalModelDistribution
-p org.apache.mahout.math.SequentialAccessSparseVector

After each iteration of Dirichlet process clustering, the job writes the state in the output folder as

subfolders with pattern state-*. Your can read then using SequenceFile reader and get the centroid

and the standard deviation values for each model. Based on this we assign vectors to each cluster at the

end of clustering.

Dirichlet process clustering is a powerful way of getting quality clusters using the knowledge of data

distribution models. In Mahout, we have made the algorithm as a pluggable framework where different

models can be created and tested on. As the models becomes more complex, there is a chance of things

slowing down on huge datasets. At this point, we will have to fall back on the other clustering

algorithms. However, seeing the output of Dirichlet process clustering, we can clearly take a decision on

whether the algorithm we choose should be fuzzy or rigid, overlapping or hierarchical, or whether the

distance measure is Manhattan or cosine and the threshold for convergence. The Dirichlet process

clustering is more of a data understanding tool while being a great data clustering one.

9.5 Topic Modeling using Latent Dirichlet Allocation (LDA)
Till now, we have thought of documents as a set of term with some weights assigned to it. In real life,

we think of news articles or any other text document as a set of topics. These topics are fuzzy in nature.

On rare occasions, they are ambiguous. Most of the time when we read a text, we somehow associate it

to a set of topics. If someone asks, “Hey Bob, what was that news article all about?” We will naturally

Licensed to nancy chen <amigo4u2009@gmail.com>

173

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

say “Well, it talked about the US war against terrorism” instead of telling him what words were actually

used in the document.

Think of a topic like “Dog”. There are plenty of texts on the topic “Dog” each describing various

things. The frequently occurring words in such documents would be “dog”, “woof”, “puppy”, “bark”,

“bow”, “chase”, “loyal”, “friend” to name a few. Some of these words “bow”, “bark” etc are ambiguous,

as they are found in other topics like “arrow and bow” or “bark of a tree”. Still, we can say that all these

words are in the topic “Dog”, some with more probability than others. Similarly, a topic like “Cat” has

frequently occurring words like “cat”, “kitten”, “meow”, “purr”, and “fur-ball”.

Figure 9.14 The topics “Dog” and “Cat” and the words that occur frequently in them.

If we were asked to find out these topics in a particular set of documents, our natural instinct now

would be to use clustering. We would modify our clustering code to work with word vectors instead of

document vectors we have been using until now. A word vector is nothing but a vector for each word

where the features would be ids of the other words that occur along with it in the corpus and the

weights would be the number of documents they occur together in.

Once we have such a vector, we could simply run one of the clustering algorithms, figure out the

clusters of words, and call them as topics. Though this seems very simple, the amount of processing

required to create the word vector is quite high. Still we can cluster words that occur together, call them

a topic, and then calculate the probabilities of the word occurring to each topic.

LDA is more than just this clustering. If two words having the same meaning or form don’t occur

together, then clustering will not be able to associate correlation between those two based on other

instances. This is where LDA shines.

Now lets extend this problem. Say, we have a set of observations (documents and the words in it).

Can we find out the hidden groups of features (topics) to explain these observations? LDA clusters

features into hidden groups or topics in a very efficient manner.

Licensed to nancy chen <amigo4u2009@gmail.com>

174

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

9.5.1 Understanding LDA
Firstly, don’t confuse LDA with the concept of Linear Discriminant Analysis. That is also known by the

short name LDA. Linear Discriminant Analysis is a method used in classification where as Latent Dirichlet

Allocation is a form of clustering.

LDA is a generative model like the Dirichlet process clustering. We start with a known model and try

to explain the data by refining the parameters to fit the model to the data. LDA does this by assuming

that the whole corpus has some k number of topics and each document is a talking about these k topics.

Therefore, the document is considered a mixture of topics with different probabilities.

TIP

Machine learning algorithms come in two flavors - generative or discriminative. Algorithms like K-

Means or hierarchical clustering which tries to split the data into k groups based on a distance metric

are generally called discriminative. The example of the discriminative type is the SVM classifier, which

we will learn about in the Classification part of this book. In Dirichlet clustering, the model tweaked to

fit the data, and just using the parameters of the model, we can generate the data on which it fits.

Hence, it is called a generative model.

How is it better than just clustering words? LDA is much powerful than standard clustering as it can

jointly cluster words into "topics" and documents into mixtures of topics. Suppose there is a document

about the Olympics, which has words like “gold”, “medal”, “run”, “sprint” and another document about

the 100m sprints in Asian games and has words like “winner”, “gold”, and “sprint”. LDA can infer a

model where the first document is considered as the mix of two topics one about sports and has words

like “winner, “gold”, “medal” and other about the 100m run and has words like “run”, “sprint”. LDA can

find the probability with which each of the topics generate the respective documents. The topics

themselves are a distribution of the probabilities of words. Therefore, the topic “sports” may have the

word “run” with a lower probability than in the “100m sprint”.

The LDA algorithm works similar to Dirichlet clustering. It starts with an empty topic model. It then

reads all the documents in the Mapper in parallel and calculates the probability of each topic for each

word in the document. Once this is done, the counts of these probabilities are sent to the reducer where

they are summed and the whole model is normalized. We run this process repeatedly until the model

starts explaining the documents better: that is, the sum of the (log) probabilities stop changing. The

degree of change is decided by a convergence threshold parameter, similar to the threshold we found in

K-Means clustering. Instead of the relative change in centroid, LDA estimates how well the model fits

the data. If the likelihood value does not change above this threshold, we stop the iteration.

9.5.2 Tuning the parameters of LDA
Before running the LDA implementation in Mahout, we need understand the two parameters in LDA

that gives a big impact on the runtime and quality. The first of these is the number of topics. Like, K-

Means, we need to figure it out from the data that we have. Lower value for the number of topics

usually gives us broader topics like science, sports, politics etc and engulfs words spanning multiple

sub-topics. Large number of topics gives us focused or niche ones like “quantum physics”, “laws of

reflection”.

Licensed to nancy chen <amigo4u2009@gmail.com>

175

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

A large number of topics also mean that the algorithm needs lengthier passes to estimate the word

distribution for all the topics. This can be a serious slow down. A good rule of thumb is to choose a value

that makes sense for a particular use case. Since, Mahout LDA is written as a Map/Reduce job, it can be

run in large Hadoop clusters. We can speed up the algorithm by adding more servers if there is such

need.

Second parameter is the number of words in the corpus, which is also the cardinality of the vectors.

It determines the size of the matrices used in the LDA Mapper. The Mapper constructs a matrix of the

size - number of topics multiplied by document length, which is number of words or features in the

corpus. If we need to speed up LDA, apart from decreasing the number of topics, we also need to keep

the features to a minimum. If we need to find the complete probability distribution of all the words over

topics, we should leave this parameter alone. Instead, if we are interested only in finding the topic

model containing only the keywords from a large corpus, we can simply prune away the high frequency

words in the corpus while creating vectors.

We can lower the value of the max-document-frequency-percentage parameter (--maxDFPercent)

in the dictionary-based vectorizer. A value of 70 removes all words that occur in more than 70% of the

documents.

9.5.3 Case Study: Finding topics in News documents
We will run the Mahout LDA over the Reuters dataset. First, we run the dictionary vectorizer, create

Tf-Idf vectors, and use them as input for the LDADriver. The high frequency words are pruned to

speed up the calculation. In this example, we will model 10 topics from the Reuter vectors. The entry

point LDADriver takes the following parameters:

 Input directory containing Vectors

 Output directory to write the LDA states after every iteration

 Number of topics to model –k 10

 Number of features in the corpus –v

 Topic smoothing parameter (uses the default value of 50/number of topics)

 Limit on the maximum number of iterations (--maxIter 20)

The number of features in the corpus (-v) can be easily found by counting the number of entries in

the dictionary file located in the vectorizer folder. We can use the SequenceFileDumper utility to find

the number of dictionary entries as described in chapter 8. We will run the LDA algorithm from the

command line as follows:
bin/mahout lda
-i reuters-vectors
-o reuters-lda-sparse
-k 10 -v 7000 --maxIter 20 –w

LDA will run 20 iterations or stop when the estimation converges. The state of the model after each

iteration is written in the output directory as folders beginning with state-. Mahout has an output

reader for LDA under the utils directory for reading the topic and word probabilities from the output

state directory.

Licensed to nancy chen <amigo4u2009@gmail.com>

176

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

org.apache.mahout.clustering.lda.LDAPrintTopics is the main entry point for the utility.

We can see the top 5 words of each topic model from the state folder of any iteration as follows:
bin/mahout org.apache.mahout.clustering.lda.LDAPrintTopics
-s reuters-lda-sparse/state-20/
-d reuters-vectors/dictionary-file-*
-dt sequencefile –w 5

The output for this example is shown in Table 9.1. Note that only 5 topics are shown from the 10.

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

wheat south loans trading said

7-apr-1987 said president exchange inc

agriculture oil bank market its

export production chairman dollar corp

tonnes energy debt he company

Table 9.1 Top 5 words in selected topics from LDA topic modeling of Reuters news data.

LDA was able to distill some very diverse set of topics from the Reuters collection. Still there are

some undesired words like “7-apr-1987”, “said”, “he” etc. LDA treats these words similar to any other

word in the collection. So, more number of iterations is usually necessary to find better topic models.

The unwanted words don’t go away easily because of the high frequency with which they occur. It is

found that these words belong to any topic with a higher probability than the keywords. This is clear if

we try to examine the documents talking about these topics in the corpus. However, words like “said”,

“he” etc did not go even after pruning high frequency words using the dictionary-vectorizer. Can LDA do

something better? Yes, it can!

One parameter we didn’t tweak in this run was the topic smoothing parameter (-a). Since text data

is very noisy, it induces error in the LDA estimation. LDA can work around it by increasing smoothing

value to increase the effect of keywords that occur infrequently. Doing this decreases the effect of the

high frequency words, as well. This causes LDA to take more number of iterations to produce a

meaningful topic model.

By default, LDA keeps this smoothing parameter as 50/numTopics. In our sample run, it was 5. Let

us increase the smoothing value to say 20, and re-rerun LDA. After the iterations finish, inspect the

output using the LDAPrintTopics class.

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

production year said stock vs

tonnes growth banks corp mln

price foreign have securities cts

Licensed to nancy chen <amigo4u2009@gmail.com>

177

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

oil last analysts inc net

department billion market reuter loss

Table 9.2 Top 5 words in selected topics from LDA topic modeling of Reuters data after increased smoothing is applied.

The output is displayed in table 9.2. Effects of high frequency words are still there, but the topics

look like they have become more coherent.

9.5.4 Applications of Topic Modeling
Topic modeling output files are of the (key, value) format (IntPairWritable,

DoubleWritable). The key is a pair of integers, first being the topic id and the second the feature id.

The value is the likelihood of the word being in the model. We can use these models for many practical

purposes:

 Use them as centroids and associate documents to the nearest center using any distance

measure

 Assign label to them and use them as models for classification again using some distance
measure

 Topic collections can be visualized as related tag clouds similar to Digg and Del.icio.us. We will
explore more on this in our chapter on case studies

 Visualize topics across time. We model topics in news articles by month or by year. We can see

trends in topics over time. An interesting experiment is the topic modeling of science across time.

If we look closer, we will see that the most mentioned words in science journals of 1890s was

about steam engine, in 1940s about atomic research, in 1990s about polymer and semiconductor

devices. The experiment is explained in this website:
http://www.cs.princeton.edu/~blei/topicmodeling.html

 Words in topic models can be used to improve search coverage. Using this information, a person
can search for “Cola”, and get results for the queries “Coca-Cola” and “Pepsi” along with it

LDA is an algorithm, which can uncover interesting clusters and word relationship from a corpus. People

are still trying to discover ways to fully utilize all this information. Mahout LDA helps us analyze millions

of documents over large number of servers. Since it runs very fast, it is easy to experiment with it. We

will explore LDA in a case study in Chapter 12 and show how it is used to boost the related document

framework we are trying show.

Licensed to nancy chen <amigo4u2009@gmail.com>

http://www.cs.princeton.edu/~blei/topicmodeling.html�

178

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

9.6 Summary
In this chapter, we saw the clustering algorithms Mahout had to offer. The chapter started with the

various categories of clustering algorithms based on their clustering strategy and are summarized table

9.3.

Algorithms

In-memory
implementation

Map/Reduce
implementation

Fixed
clusters

Partial
membership

K-Means KMeansClusterer KMeansDriver Y N

Canopy CanopyClusterer CanopyDriver N N

K-Means++ KMeansPlusClusterer KMeansPlusDriver N N

Fuzzy K-Means FuzzyKMeansClusterer FuzzyKMeansDriver Y Y

Dirichlet process DirichletClusterer DirichletDriver N Y

LDA N/A LDADriver Y Y

Table 9.3 A summary of the different clustering algorithms in mahout, the entry-point classes, and their properties.

 The Mahout implementation of the popular K-Means algorithm works great for small and big datasets. A

good estimation of the centroids of the clusters made clustering faster. Due to this reason, we explored

ways to improve centroid estimation. The Canopy clustering and K-Means++ algorithms did fast and

approximate clustering of the data and estimated the centroid of the clusters approximately. By using

these centroids as starting point, K-Means iterations were found to converge much faster than before.

We saw the various parameters in K-Means and used it to create a clustering module for a news

website. Using the distance measure classes in Mahout, we were able to tune the news-clustering

module to get better quality of clusters for text data.

Fuzzy K-Means clustering gives more information related to partial membership of a document into

various clusters and Fuzzy K-Means has better convergence properties than just K-Means. We tuned our

clustering module to use Fuzzy K-Means to help identify this soft membership information. Due to the

limitation of fixing a k value in K-Means and Fuzzy K-Means, we explored other options and found

model-based clustering algorithm to be a good replacement for both of them.

Model based clustering algorithm in Mahout, the Dirichlet process clustering did not just assign

points into a set of clusters. It was able to explain how well the model fit the data as well as the

distribution of points in the cluster. This algorithm was able to describe the clusters in some very

difficult dataset where previous methods failed. Dirichlet process clustering proved to be a powerful tool

to describe such data.

Finally, we looked at LDA a recent advancement in the area of clustering which was able to model

the data into mixture of topics. These topics are not only clusters of documents but also a probabilistic

distribution of words. LDA could jointly cluster the set of words into topics and make the set of

documents a mixture of topics. LDA opened up new possibilities where we are able to identify

connections between various words purely from the observed text corpus.

Licensed to nancy chen <amigo4u2009@gmail.com>

179

©Manning Publications Co. Please post comments or corrections to the Author Online forum:

 http://www.manning-sandbox.com/forum.jspa?forumID=623

The actual insight of what works best for our data comes with experimentation. We have powerful

tools in the Mahout clustering package, which are built on top of Hadoop that gives us the power to

scale to data of any size by simply adding more machines to the cluster.

The next few chapters will be focused more on tuning a clustering algorithm for speed and quality.

Over the way, we will refine our news clustering code, and finally demonstrate the related-articles

feature in action. We will also explore some very interesting problems as case studies, which the

clustering algorithms in Mahout help solve. Next, in Chapter 9, we will learn about some lesser known

tools and techniques present in Mahout to help understand and improve the quality of clustering.

	Cover Page
	Copyright
	Table of Contents
	Meet Mahout
	1.1 Is Mahout for Me?
	1.2 Recommender Engines
	1.3 Clustering
	1.4 Classification
	1.5 Scaling up
	1.6 Setting up Mahout
	1.7 Summary

	Introducing Recommenders
	2.1 What is recommendation?
	2.2 Running a first recommender engine
	2.3 Evaluating a Recommender
	2.4 Evaluating precision and recall
	2.5 Evaluating the GroupLens data set
	2.6 Summary

	Representing Data
	3.1 Representing Preferences
	3.2 Speeding up collections
	3.3 In-memory DataModels
	3.4 Database-based data
	3.5 Ignoring preference values
	3.6 Summary

	Making Recommendations
	4.2 Exploring the user-based recommender
	4.3 Exploring user neighborhoods
	4.4 Exploring similarity metrics
	4.5 Item-based recommendation
	4.6 Slope-one recommender
	4.7 New and experimental recommenders
	4.8 Comparing to content-based recommenders
	4.9 Comparing to model-based recommenders
	4.10 Summary

	Taking Recommendersto Production
	5.1 Dating data from libimseti.cz
	5.2 Finding an effective recommender
	5.3 Injecting domain-specific information
	5.4 Recommending to anonymous users
	5.5 Creating a web-enabled service
	5.6 Updating and monitoring the Recommender
	5.7 Summary

	Distributing Recommendation Computations
	6.1 Analyzing the massive Wikipedia data set
	6.2 Distributing an item-based algorithm
	6.3 Implementing a distributed algorithm with Hadoop
	6.4 Running MapReduces with Hadoop
	6.5 Pseudo-distributing a Recommender
	6.6 Looking beyond first steps with recommendations
	6.7 Summary

	Introduction to Clustering
	7.1 What is clustering?
	7.2 Measuring the similarity of Items
	7.3 Hello World: Running a simple clustering example
	7.4 Exploring distance measures
	7.5 Hello World Again! Trying out various distance measures
	7.5 Summary

	Representing Data
	8.1 Representing vectors
	8.2 Representing text documents as vectors
	8.3 Generating vectors from documents
	8.4 When normalization is needed
	8.5 Summary

	Clustering Algorithms in Mahout
	9.1 K-Means clustering
	9.2 Beyond K-Means: An overview of clustering techniques
	9.3 Fuzzy K-Means clustering
	9.4 Model based Clustering
	9.5 Topic Modeling using Latent Dirichlet Allocation (LDA)
	9.6 Summary

