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1 
Meet Mahout 

This chapter covers: 

 What Mahout is 

 A glimpse of recommender engines, clustering, classification in the real world 

 Setting up Mahout 

As you may have guessed from the title, this book is about putting a particular tool, Mahout, to effective 

use in real life. And what is Mahout? 

Mahout is an open source machine learning library from Apache. The algorithms it implements fall 

under the broad umbrella of “machine learning,” or “collective intelligence.” This can mean many things, 

but at the moment for Mahout it means primarily collaborative filtering / recommender engines, 

clustering, and classification. 

It is scalable. Mahout aims to be the machine learning tool of choice when the data to be processed 

is very large, perhaps far too large for a single machine. In its current incarnation, these scalable 

implementations are written in Java, and some portions are built upon Apache's Hadoop distributed 

computation project. 

It is a Java library. It does not provide a user interface, a pre-packaged server, or installer. It is a 

framework of tools intended to be used and adapted by developers. 

1.1 Is Mahout for Me? 
You may be wondering – is this a project and a book for me? 

If you are seeking a textbook on machine learning, no.  This book does not attempt to fully explain 

the theory and derivation of the various algorithms and techniques presented. Some familiarity with 

these machine learning techniques and related concepts like matrix and vector math is useful in reading 

this book, but not assumed. 

If you are developing modern, intelligent applications, then the answer is yes. This book provides a 

practical rather than theoretical treatment of these techniques, along with complete examples and 

recipes for solutions. It develops some insights gleaned by experienced practitioners in the course of 

demonstrating how Mahout can be deployed to solve problems. 
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If you are a researcher in artificial intelligence, machine learning and related areas – yes. Chances 

are your biggest obstacle is translating new algorithms into practice. Mahout provides a fertile 

framework for testing and deploying new large-scale algorithms. This book is an express ticket to 

functioning machine learning systems on top of complex distributed computing frameworks. 

If you are a leading a product team or startup that will leverage machine learning to create a 

competitive advantage, this book is also for you. Through real-world examples, it will plant ideas about 

the many ways these techniques may be deployed. It will also help your scrappy technical team jump 

directly to a cost-effective implementation that can handle volumes of data previously only realistic for 

organizations with large technology resources. 

Finally, you may be wondering how to say “Mahout” – it should rhyme with “trout.” It is a Hindi word 

that refers to an elephant driver, and to explain that one, here’s a little history. Mahout began life in 

2008 as a subproject of Apache's Lucene project, which provides the well-known open-source search 

engine of the same name. Lucene provides advanced implementations of search, text mining and 

information retrieval techniques. In the universe of Computer Science, these concepts are adjacent to 

machine learning techniques like clustering and, to an extent, classification. So, some of the work of the 

Lucene committers that fell more into these machine learning areas was spun off into its own 

subproject. Soon after, Mahout absorbed the “Taste” open-source collaborative filtering project.  

As of April 2010, Mahout has become a top-level Apache project in its own right. 

Much of Mahout’s work has been to not only implement these algorithms conventionally, in an 

efficient and scalable way, but also to convert some of these algorithms to work at scale on top of 

Hadoop. Hadoop’s mascot is an elephant, which at last explains the project name!  

 

 

 

 

 

 

Figure 1.1 Mahout and its related projects 

Mahout incubates a number of techniques and algorithms, many still in development or in an 

experimental phase. At this early stage in the project's life, three core themes are evident: collaborative 

filtering / recommender engines, clustering, and classification. Chances are that if you are reading 

this, you are already aware of the interesting potential of these three families of techniques. But just in 

case, read on. 
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1.2 Recommender Engines 
Recommender engines are the most immediately recognizable machine learning technique in use today. 

We've all seen services or sites that attempt to recommend books or movies or articles based on our 

past actions. They try to infer tastes and preferences and identify unknown items that are of interest: 

 

 Amazon.com is perhaps the most famous commerce site to deploy recommendations. Based on 

purchases and site activity, Amazon recommends books and other items likely to be of interest. 
See figure 1.1. 

 Netflix similarly recommends DVDs that may be of interest, and famously offered a $1,000,000 
prize to researchers that could improve the quality of their recommendations. 

 Dating sites like Líbímseti (discussed later) can even recommend people to people. 

 Social networking sites like Facebook use variants on recommender techniques to identify people 
most likely to be an as-yet-unconnected friend. 

 

 

Figure 1.1 A recommendation from Amazon. Based on past purchase history and other activity of customers like the 
user, Amazon considers this to be something the user is interested in. It can even tell the user something similar that he 
or she has bought or liked that in part caused the recommendation. 

1.3 Clustering 
Clustering turns up in less apparent but equally well-known contexts. As its name implies, clustering 

techniques attempt to group a large number of things together into clusters that share some similarity. 

It is a way to discover hierarchy and order in a large or hard-to-understand data set, and in that way 

reveal interesting patterns or make the data set easier to comprehend. 

 

Google News groups news articles according to their topic using clustering techniques in order to 

present news grouped by logical story, rather than a raw listing of all articles. Figure 1.2 below 

illustrates this. 

Search engines like Clusty group search results for similar reasons 
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Consumers may be grouped into segments (clusters) using clustering techniques based on attributes 

like income, location, and buying habits. 

Figure 1.2. A sample news grouping from Google News. A detailed snippet from one representative story is displayed, 
and links to a few other similar stories within the cluster for this topic are shown. Links to all the rest of the stories that 
clustered together in this topic are available too. 

1.4 Classification 
Classification techniques decide how much a thing is or isn't part of some type or category, or, does or 

doesn't have some attribute. Classification is likewise ubiquitous, though even more behind-the-scenes. 

Often these systems “learn” by reviewing many instances of items of the categories in question in order 

to deduce classification rules. This general idea finds many applications: 

 

Yahoo! Mail decides whether incoming messages are spam, or not, based on prior emails and spam 

reports from users, as well as characteristics of the e-mail itself. A few messages classified as spam are 

shown in figure 1.3. 

Picasa (http://picasa.google.com/) and other photo management applications can decide when a region 

of an image contains a human face. 

Optical character recognition software classifies small regions of scanned text into individual characters 

by classifying the small areas as individual characters. 

Apple’s Genius feature in iTunes reportedly uses classification to classify songs into potential playlists 

for users 

Figure 1.3 Spam messages as detected by Yahoo! Mail. Based on reports of email spam from users, plus other 
analysis, the system has learned certain attributes that usually identify spam. For example, messages mentioning 
“viagra” are frequently spam – as are those with clever misspellings like “v1agra”. The presence of such terms are an 
example of an attribute that a spam classifier can learn. 

1.5 Scaling up 
Each of these techniques works best when provided with a large amount of good input data. In some 

cases, these techniques must work not only on large amounts of input, but must produce results 

quickly. These factors quickly make scalability a major issue. 
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Picasa may have hosted over half a billion photos even three years ago, according to some crude 

estimates1

According to a similar analysis, Google News sees about a 3.5 million new news articles per day. 

Although this by itself is not a large amount, consider that these articles must be clustered, along with 

other recent articles, in minutes in order to become available in a timely manner. 

. This implies millions of new photos per day that must be analyzed. The analysis of one 

photo by itself is not a large problem, though it is repeated millions of times. But, the learning phase 

can require information from each of the billions of photos simultaneously -- a computation on a scale 

that is not feasible for a single machine. 

The subset of rating data that Netflix published for the Netflix Prize contained 100 million ratings2

These techniques are necessarily deployed in contexts where the amount of input is large – so large, 

that it is not feasible to process it all on one computer, even a powerful one. So, nobody implementing 

these techniques can ignore issues of scale. This is why Mahout makes scalability a top priority, and, 

why this book will focus, in a way that others don't, on dealing with large data sets effectively. 

. 

Since this was just the data released for contest purposes, presumably, the total amount of data that 

Netflix actually has and must process to create recommendations is many times larger! 

1.5.1 MapReduce and Hadoop 
Some of Mahout makes use of Apache's Hadoop project, which includes an open-source, Java-based 

implementation of the MapReduce (http://labs.google.com/papers/mapreduce.html) distributed 

computing framework popularized and used internally at Google. MapReduce is a programming 

paradigm that at first sounds odd, or too simple to be powerful. The MapReduce paradigm applies to 

problems where the input is a set of key-value pairs. A “map” function turns these key-value pairs into 

other intermediate key-value pairs. A “reduce” function merges in some way all values for each 

intermediate key, to produce output. Actually, many problems can be framed as a MapReduce problem, 

or a series of them. And, the paradigm lends itself quite well to parallelization: all of the processing is 

independent, and so can be split across many machines. Rather than reproduce a full explanation of 

MapReduce here, we refer you to tutorials such as the one provided by Hadoop 

(http://hadoop.apache.org/common/docs/current/mapred_tutorial.html). 

Hadoop implements the MapReduce paradigm, which is no small feat, even given how simple 

MapReduce sounds. It manages storage of the input, intermediate key-value pairs, and output; this 

data could potentially be massive, and, must be available to many worker machines, not just stored 

locally on one. It manages partitioning and data transfer between worker machines. It handles detection 

of and recovery from individual machine failure. Understanding how much work goes on behind the 

scenes will help prepare you for how relatively complex using Hadoop can seem. It’s not just a library 

you add to your project. It’s several components, each with libraries and (several) standalone server 

processes, which might be run on several machines. Operating processes based on Hadoop is not 

simple, but, investing in a scalable, distributed implementation can pay dividends later: because your 

data may grow exponentially to great sizes before you know it, this sort of scalable implementation is a 

way to future-proof your application. 

                                                   
 
1 http://blogoscoped.com/archive/2007-03-12-n67.html 
2 http://archive.ics.uci.edu/ml/machine-learning-databases/netflix/ 

Licensed to nancy chen <amigo4u2009@gmail.com>

http://labs.google.com/papers/mapreduce.html�
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html�


9 
 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 

                   http://www.manning-sandbox.com/forum.jspa?forumID=623 
 

Later, this book will try to cut through some of that complexity to get you running on Hadoop fast, at 

which point you can explore the finer points and details of operating full clusters, and tuning the 

framework. Because this is complex framework that needs a great deal of computing power is becoming 

so popular, it’s not surprising that cloud computing providers are beginning to offer Hadoop-related 

services. For example Amazon offers Elastic MapReduce (http://aws.amazon.com/elasticmapreduce/), a 

service which manages a Hadoop cluster, provides the computing power, and puts a friendlier interface 

on the otherwise complex task of operating and monitoring a large-scale job with Hadoop. 

1.6 Setting up Mahout 
Without further delay, let’s look ahead to engaging Mahout in practice. You will need to assemble some 

tools before you can “play along at home” as we present some code in the coming chapters. We assume 

you are comfortable with Java development already. 

Mahout and its associated frameworks are Java-based and therefore platform-independent, so you 

should be able to use it with any platform that can run a modern JVM. At times, we will need to give 

examples or instructions that will vary from platform to platform. In particular, command-line 

commands are somewhat different in a Windows shell than in a FreeBSD tcsh shell. We will use 

commands and syntax that work with bash, a shell found on most Unix-like platforms. This is the 

default on most Linux distributions, Mac OS X, many Unix variants, and Cygwin (a popular Unix-like 

environment for Windows). Windows users who wish to use the Windows shell are the most likely to be 

inconvenienced by this. Still, it should be simple to interpret and translate the listings given in this book 

to work for you. 

1.6.1 Java and IDE 
Java is likely already installed on your personal computer if you have done any Java development so far. 

Note that Mahout requires Java 6. If in doubt, open a terminal and type java -version. If the 

reported version does not begin with “1.6”, you need to also install Java 6.  

Windows and Linux users can find a Java 6 JVM from Sun at http://java.sun.com. Apple provides a 

Java 6 JVM for Mac OS X 10.5 and 10.6. If it does not appear that Java 6 is being used, open “Java 

Preferences” under /Applications/Utilities. This will allow you to select Java 6 as the default. 

Most people will find it quite a bit easier to edit, compile and run the many examples we will see with 

the help an IDE; this is strongly recommended. Eclipse (http://www.eclipse.org) is the most popular, 

free Java IDE. Installing and configuring Eclipse is beyond the scope of this book, but you should spend 

some time becoming familiar with it before proceeding. IntelliJ IDEA 

(http://www.jetbrains.com/idea/index.html) is another powerful and popular IDE, with a free 

“community” version now available. 

For example, IDEA can create a new project from an existing Maven model; by specifying the root 

directory of the Mahout source code upon creating a project, it will automatically configure and present 

the entire project in an organized manner. It’s then possible, for example, drop the source code found 

throughout this book under the core/src/… source root, and run it from within IDE with one click -- 

the details of dependencies and compilation are managed automatically. This should prove far easier 

than attempting to compile and run manually. 
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1.6.2 Installing Maven 
As with many Apache projects, Mahout’s build and release system is built around Maven 

(http://maven.apache.org). Maven is a command-line tool that manages compiling code, packaging 

release, generating documentation, and publishing formal releases. Although it has some superficial 

resemblances to the also-popular Ant build tool, it is not the same. Ant is a flexible, lower-level scripting 

language, and Maven is a higher-level tool more purpose-built for release management. 

Because Mahout uses Maven, you should install Maven yourself. Mac OS X users will be pleased to 

find that Maven should already be installed. If not, install Apple’s Developer Tools. Type mvn --
version on the command line. If you successfully see a version number, and the version is at least 

2.2, you are ready to go. If not, you should install a local copy of Maven. 

Users of Linux distributions with a decent package management system may be able to use it to 

quickly obtain a recent version of Maven. Otherwise, standard procedure would be to download a binary 

distribution, unpack it to a common location such as /usr/local/maven, then edit bash’s 

configuration file, ~/.bashrc, to include a line like export PATH=/usr/local/maven/bin:$PATH. 

This will ensure that the mvn command is always available. 

If you are using an IDE like Eclipse or IntelliJ, it already includes Maven integration. Refer to its 

documentation to learn how to enable the Maven integration. This will make working with Mahout in an 

IDE much simpler, as the IDE can use the project’s Maven configuration file (pom.xml) to instantly 

configure and import the project. 

1.6.3 Installing Mahout 
Mahout is still in development. This book was written to work with the 0.4 release of Mahout. This 

release and others may be downloaded by following instructions at 

http://lucene.apache.org/mahout/releases.html; the archive of source code may be unpacked anywhere 

that is convenient on your computer. 

Because Mahout is changing frequently, and bug fixes and improvements are added regularly, it may 

be useful in practice to use a later release (or even the latest, unreleased code from Subversion. See 

http://lucene.apache.org/mahout/developer-resources.html). Future point releases should be 

backwards-compatible with the examples in this book. 

Once you have obtained the source, either from Subversion or from a release archive, create a new 

project for Mahout in your IDE. This is IDE-specific; refer to its documentation for particulars of how this 

is accomplished. It will be easiest to use your IDE’s Maven integration to simply import the Maven 

project from the pom.xml file in the root of the project source. 

Once configured, you can easily create a new source directory within this project to hold sample 

code that will be introduced in upcoming chapters. With the project properly configured, you should be 

able to compile and run the code transparently with no further effort. 

1.6.4 Installing Hadoop 
For some activities later in this book, you will need your own local installation of Hadoop. You do not 

need a cluster of computers to run Hadoop. Setting up Hadoop is not difficult, but not trivial. Rather 

than repeat the procedures, we direct you to obtain a recent copy of Hadoop (version 0.20.x at the time 

of this writing) from http://hadoop.apache.org/common/releases.html, and then set up Hadoop for 
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“pseudo-distributed” operation by following the quick start documentation currently found at 

http://hadoop.apache.org/common/docs/current/quickstart.html.  

1.7 Summary 
Mahout is a young, open-source, scalable machine learning library from Apache, and this book is a 

practical guide to using Mahout to solve real problems with machine learning techniques. In particular, 

we will soon explore recommender engines, clustering, and classification. If you’re a researcher familiar 

with machine learning theory and looking for a practical how-to guide, or a developer looking to quickly 

learn best practices from practitioners, this book is for you. 

These techniques are no longer merely theory: we’ve noted already well-known examples of 

recommender engines, clustering, and classification deployed in the real world: e-commerce, e-mail, 

videos, photos and more involve large-scale machine learning. 

And, we’ve noted the vast amount of data sometimes employed with these techniques – scalability is 

a uniquely persistent concern in this area. We took a first look at MapReduce and Hadoop and how they 

power some of the scalability that Mahout provides. 

Because this will be a hands-on, practical book, we’ve set up to begin working with Mahout right 

away. At this point, you should have assembled the tools you will need to work with Mahout and be 

ready for action. Because we promised that this book would be practical, let that wrap up the opening 

remarks now and get on to some real code with Mahout. Read on! 
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                           2 
Introducing Recommenders 

This chapter covers: 

 A first look at a Recommender in action 

 Evaluating accuracy of recommender engines 

 Evaluating an engine’s precision and recall 

 Evaluating a recommender on a real data set: GroupLens 

Each day we form opinions about things we like, don't like, and don't even care about. It happens 

unconsciously. You hear a song on the radio and either notice it because it's catchy, or because it 

sounds awful – or maybe don't notice it at all. The same thing happens with t-shirts, salads, hairstyles, 

ski resorts, faces, and television shows. 

Although people's tastes vary, they do follow patterns. People tend to like things that are similar to 

other things they like. Because I love bacon-lettuce-and-tomato sandwiches, you can guess I would 

enjoy a club sandwich, which is mostly the same sandwich, with turkey. Likewise, people tend to like 

things that similar people like. When a friend entered design school, she saw that just about every other 

design student owned a Macintosh computer – which was no surprise, as she was already a lifetime Mac 

user. 

We can probably use these patterns predict these likes and dislikes. If we put a stranger in front of 

you and asked whether you thought she liked the third Lord of the Rings film, you might have nothing 

better than a guess. But, if she tells us she loved the first two films in the series, you'd be shocked if 

she didn't like the third as well. On the other hand, if she says she hated the films, or asks, “Lord of the 

what?” you'd rightly guess the third film is not on her favorites list. 

Recommendation is all about predicting these patterns of taste, and using them to discover new and 

desirable things you didn’t already know about. 
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2.1 What is recommendation? 
You picked up this book from the shelf for a reason. Maybe you saw it next to other books you know 

and find useful, and figure the bookstore has put it there since people who like those books tend to like 

this one too. Maybe you saw this book on the shelf of a coworker, who you know shares your interest in 

machine learning, or perhaps he recommended it to you directly. 

In later chapters, we will explore some of the ways people make recommendations and discover new 

things -- and of course how these processes are implemented in software with Mahout. We’ve already 

mentioned a few strategies: to discover items we may like, we could look to what people with similar 

tastes seem to like. On the other hand, we could figure out what items are like the ones we already like, 

again by looking to others’ apparent preferences. These describe the two broadest categories of 

recommender engine algorithms: “user-based” and “item-based” recommenders. 

2.1.1 Collaborative filtering versus content-based recommendation 
Strictly speaking, these are examples of “collaborative filtering” -- producing recommendations based 

on, and only based on, knowledge of users’ relationships to items. These techniques require no 

knowledge of the properties of the items themselves. This is, in a way, an advantage. This 

recommender framework couldn’t care less whether the “items” are books, theme parks, flowers, or 

even other people, since nothing about their attributes enters into any of the input. 

There are other approaches based on the attributes of items, and are generally referred to as 

“content-based” recommendation techniques. For example, if a friend recommended this book to you 

because it’s a Manning book, and the friend likes other Manning books, then the friend is engaging in 

something more like content-based recommendation. The thought is based on an attribute of the books: 

the publisher. The Mahout recommender framework does not directly implement these techniques, 

though it offers some ways to inject item attribute information into its computations. As such, it might 

technically be called a collaborative filtering framework. 

There’s nothing wrong with these techniques; on the contrary, they can work quite well. They are 

necessarily domain-specific approaches, and would be hard to meaningfully codify into a framework. To 

build an effective content-based book recommender, one would have to decide which attributes of a 

book -- page count, author, publisher, color, font -- are meaningful, and to what degree. None of this 

knowledge translates into any other domain; recommending books this way doesn’t help in recommend 

pizza toppings. 

For this reason, Mahout will not have much to say about this sort of recommendation. These ideas 

can be built into, and on top of, what Mahout provides; an example of this will follow in a later chapter, 

where we build a recommender for a dating site. Also later, after introducing the implementations that 

Mahout provides for collaborative filtering-based recommenders, we’ll discuss their relation to content-

based approaches in more detail. 

2.1.2 Recommenders hit the mainstream 
Most people have by now seen recommendations implemented in practice on sites like Amazon or 

Netflix: based on browsing and purchase history, the web site will produce a list of products that it 

believes may appeal to you. This sort of recommender engine has been around since the 1990s, but 

until recently has been the domain of fancy researchers with big computers. As these techniques have 

become more mainstream, demand for them has increased, and supply of open-source implementations 
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has as well. This, along with increasingly accessible and cost-effective computing power, means that 

recommender engines are becoming more accessible and widely used. 

In fact, recommender techniques aren't just for recommending things like DVDs to customers. The 

approach is general enough to estimate the strength of associations between many things. One could 

recommend customers to DVDs using the same techniques – estimate which customer might like a 

certain DVD the most. In a social network, a recommender could recommend people to people. 

2.2 Running a first recommender engine 
Mahout contains a recommender engine – several types, in fact, beginning with conventional user-based 

and item-based recommenders. It also includes implementations based on “slope-one” techniques, a 

new and efficient approach. You will also find experimental, preliminary implementations based on the 

singular value decomposition (SVD) and more. In the upcoming chapters, we will review the 

observations above in the context of Mahout and some real-world examples. We will look at how to 

represent data, tour the available recommender algorithms, evaluate the effectiveness of 

recommendations, tune and customize the recommender for a particular problem, and finally look at 

distributing the computation. 

2.2.1 Creating the input 
To explore recommendations in Mahout we will start with a trivial example. First, we need input to the 

recommender, data on which to base recommendations. This takes the form of “preferences” in Mahout-

speak. Because the recommender engines that are most familiar involve recommending items to users, 

it will be most convenient to talk about preferences as associations from users to items – though as 

noted above, these users and items could be anything. A preference consists of a user ID and an item 

ID, and usually a number expressing the strength of the user's preference for the item. IDs in Mahout 

are always numbers, integers in fact. The preference value could be anything, as long as larger values 

mean stronger positive preferences. For instance, these values might be ratings on a scale of 1 to 5, 

where the user has assigned “1” to items she can't stand, and “5” to her favorites. 

Create a text file containing data about users, cleverly named “1” to “5”, and their preferences for 

four books, which we will call “101” through “104”. In real-life, these might be customer IDs and 

product IDs from a company database; Mahout doesn’t literally require that the users and items be 

named with numbers! We'll write it down in simple comma-separated-value format. Copy the following 

into a file and save it as intro.csv: 
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Listing 2.1 Recommender input file intro.csv 

 

With some study, we notice some trends. Users 1 and 5 seem to have similar tastes. They both like 

book 101, like 102 a little less, and like 103 less still. The same goes for users 1 and 4, as they seem to 

like 101 and 103 identically (no word on how user 4 likes 102 though). On the other hand, users 1 and 

2 have tastes that seem to run counter – 1 likes 101 while 2 doesn't, and 1 likes 103 while 2 is just the 

opposite. Users 1 and 3 don't overlap much – the only book both express a preference for is 101. See 

figure 2.1 to perhaps visualize the relations, both positive and negative, between users and items. 
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Figure 2.1 Relationships between users 1 to 5 and items 101 to 107. Dashed lines represent associations that seem 
negative -- the user does not seem to like the item much, but expresses a relationship to the item. 

2.2.2 Creating a Recommender 
So what book might we recommend to user 1? Not 101, 102 or 103 – he already knows about these 

books, apparently, and recommendation is about discovering new things. Intuition suggests that 

because users 4 and 5 seem similar to 1, we should recommend something that user 4 or user 5 likes. 

That leaves 104, 105 and 106 as possible recommendations. On the whole, 104 seems to be the most 

liked of these possibilities, judging by the preference values of 4.5 and 4.0 for item 104. Now, run the 

following code: 

Listing 2.2 A simple user-based recommender program with Mahout 
package mia.recommender.ch02; 
 
import org.apache.mahout.cf.taste.impl.model.file.*; 
import org.apache.mahout.cf.taste.impl.neighborhood.*; 
import org.apache.mahout.cf.taste.impl.recommender.*; 
import org.apache.mahout.cf.taste.impl.similarity.*; 
import org.apache.mahout.cf.taste.model.*; 
import org.apache.mahout.cf.taste.neighborhood.*; 
import org.apache.mahout.cf.taste.recommender.*; 
import org.apache.mahout.cf.taste.similarity.*; 
import java.io.*; 
import java.util.*; 
 
class RecommenderIntro { 
 
  public static void main(String[] args) throws Exception { 
 
    DataModel model = new FileDataModel(new File("intro.csv")); A 
 
    UserSimilarity similarity = new PearsonCorrelationSimilarity(model); 
    UserNeighborhood neighborhood = 
      new NearestNUserNeighborhood(2, similarity, model); 
 
    Recommender recommender = new GenericUserBasedRecommender( 
        model, neighborhood, similarity); B 
 
    List<RecommendedItem> recommendations =  
        recommender.recommend(1, 1); C 
 
    for (RecommendedItem recommendation : recommendations) { 
      System.out.println(recommendation); 
    } 
 
  } 
 
} 

A Load the data file 
B Create the recommender engine 
C For user 1, recommend 1 item 
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For brevity, through several more chapters of examples that follow, we will omit the imports, class 

declaration, and method declaration, and instead repeat only the program statements themselves. To 

help visualize the relationship between these basic components, see figure 2.2. Not all Mahout-based 

recommenders will look like this -- some will employ different components with different relationships. 

But this gives a sense of what’s going on in our example. 

 

Figure 2.2 Simplified illustration of component interaction in a Mahout user-based recommender 

While we will discuss each of these components in much more detail in the next two chapters, we 

can summarize the role of each component now. A DataModel implementation stores and provides 

access to all the preference, user and item data needed in the computation. A UserSimiliarity 

implementation provides some notion of how similar two users are; this could be based on one of many 

possible metrics or calculations. A UserNeighborhood implementation defines a notion of a group of 

users that are most similar to a given user. Finally, a Recommender implementation pulls all these 

components together to recommend items to users, and related functionality. 

 

2.2.3 Analyzing the output 
Compile and run this using your favorite IDE. The output of running the program in your terminal or IDE 

should be: RecommendedItem[item:104, value:4.257081] 

We asked for one top recommendation, and got one. The recommender engine recommended book 

104 to user 1. Further, it says that the recommender engine did so because it estimated user 1’s 

preference for book 104 to be about 4.3, and that was the highest among all the items eligible for 

recommendations. 

That’s not bad. We didn't get 107, which was also recommendable, but only associated to a user 

with different tastes. We picked 104 over 106, and this makes sense when you note that 104 is a bit 

more highly rated overall. Further, we got a reasonable estimate of how much user 1 likes item 104 – 

something between the 4.0 and 4.5 that users 4 and 5 expressed. 

The right answer isn't obvious from looking at the data, but the recommender engine made some 

decent sense of it and returned a defensible answer. If you got a pleasant tingle out of seeing this 

simple program give a useful and non-obvious result from a small pile of data, then the world of 

machine learning is for you! 

For clear, small data sets, producing recommendations is as trivial as it appears above. In real life, 

data sets are huge, and they are noisy. For example, imagine a popular news site recommending news 
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articles to readers. Preferences are inferred from article clicks. But, many of these “preferences” may be 

bogus – maybe a reader clicked an article but didn't like it, or, had clicked the wrong story. Perhaps 

many of the clicks occurred while not logged in, so can’t be associated to a user. And, imagine the size 

of the data set – perhaps billions of clicks in a month.  

Producing the right recommendations from this data and producing them quickly are not trivial. Later 

we will present the tools Mahout provides to attack a range of such problems by way of case studies. 

They will show how standard approaches can produce poor recommendations or take a great deal of 

memory and CPU time, and, how to configure and customize Mahout to improve performance. 

2.3 Evaluating a Recommender 
A recommender engines is a tool, a means to answer the question, “what are the best recommendations 

for a user?” Before investigating the answers, we should investigate the question. What exactly is a 

good recommendation? And how will we know when a recommender is producing them? The remainder 

of this chapter pauses to explore evaluation of a recommender, because this is a tool that will be useful 

when we begin looking at specific recommender systems. 

The best possible recommender would be a sort of psychic that could somehow know, before you do, 

exactly how much you would like every possible item that you've not yet seen or expressed any 

preference for. A recommender that could predict all your preferences exactly would merely present all 

other items ranked by your future preference and be done. These would be the best possible 

recommendations. 

And indeed most recommender engines operate by trying to do just this, estimating ratings for some 

or all other items. So, one way of evaluating a recommender's recommendations is to evaluate the 

quality of its estimated preference values – that is, evaluating how closely the estimated preferences 

match the actual preferences. 

2.3.1 Training data and scoring 
Those “actual preferences” don't exist though. Nobody knows for sure how you'll like some new item in 

the future (including you). This can be simulated to a recommender engine by setting aside a small part 

of the real data set as test data. These test preferences are not present in the training data fed into a 

recommender engine under evaluation -- which is all data except the test data. Instead, the 

recommender is asked to estimate preference for the missing test data, and estimates are compared to 

the actual values. 

From there, it is fairly simple to produce a kind of “score” for the recommender. For example we 

could compute the average difference between estimate and actual preference. With a score of this 

type, lower is better, because that would mean the estimates differed from the actual preference values 

by less. 0.0 would mean perfect estimation -- no difference at all between estimates and actual values.  

Sometimes the root-mean-square of the differences is used: this is the square root of the average of 

the squares of the differences between actual and estimated preference values. Again, lower is better. 
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 Item 1 Item 2 Item 3 

Actual 
3.0 5.0 4.0 

Estimate 
3.5 2.0 5.0 

Difference 
0.5 3.0 1.0 

Average 
Difference 

= (0.5 + 3.0 + 1.0) / 3 = 1.5 

Root Mean 
Square 

=√((0.52 + 3.02 + 1.02) / 3) = 1.8484 

Table 2.1 An illustration of the average difference, and root mean square calculation 

Above, the table shows the difference between a set of actual and estimated preferences, and how 

they are translated into scores. Root-mean-square more heavily penalizes estimates that are way off, as 

with item 2 here, and that is considered desirable by some. For example, an estimate that’s off by 2 

whole stars is probably more than twice as “bad” as one off by just 1 star. Because the simple average 

of differences is perhaps more intuitive and easy to understand, we’ll use it in upcoming examples. 

2.3.2 Running RecommenderEvaluator 
Let's revisit the example code and instead evaluate the simple recommender we created, on our simple 

data set: 

Listing 2.3 Configuring and running an evaluation of a Recommender 
RandomUtils.useTestSeed(); A 
DataModel model = new FileDataModel(new File("intro.csv")); 
 
RecommenderEvaluator evaluator =  
  new AverageAbsoluteDifferenceRecommenderEvaluator(); 
 
RecommenderBuilder builder = new RecommenderBuilder() { B 
  @Override 
  public Recommender buildRecommender(DataModel model)  
      throws TasteException { 
    UserSimilarity similarity = new PearsonCorrelationSimilarity(model); 
    UserNeighborhood neighborhood = 
      new NearestNUserNeighborhood(2, similarity, model); 
    return  
      new GenericUserBasedRecommender(model, neighborhood, similarity); 
  } 
}; 
 
double score = evaluator.evaluate( 
    builder, null, model, 0.7, 1.0); C 
System.out.println(score); 

A Used only in examples for repeatable result 
B Builds the same Recommender as above 
C Use 70% of data to train; test with other 30% 
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Most of the action happens in evaluate(). Inside, the RecommenderEvaluator handles splitting 

the data into a training and test set, builds a new training DataModel and Recommender to test, and 

compares its estimated preferences to the actual test data. 

Note that we don’t pass a Recommender to this method. This is because, inside, the method will 

need to build a Recommender around a newly created training DataModel. So we must provide an 

object that can build a Recommender from a DataModel – a RecommenderBuilder. Here, it builds 

the same implementation that we tried in the first chapter. 

2.3.3 Assessing the result 
This program prints the result of the evaluation: a score indicating how well the Recommender 

performed. In this case you should simply see: 1.0. Even though a lot of randomness is used inside the 

evaluator to choose test data, the result should be consistent because of the call to 

RandomUtils.useTestSeed(), which forces the same random choices each time. This is only used in 

such examples, and unit tests, to guarantee repeatable results. Don’t use it in your real code. 

What this value means depends on the implementation we used – here, 

AverageAbsoluteDifferenceRecommenderEvaluator. A result of 1.0 from this implementation 

means that, on average, the recommender estimates a preference that deviates from the actual 

preference by 1.0. 

A value of 1.0 is not great, on a scale of 1 to 5, but there is so little data here to begin with. Your 

results may differ as the data set is split randomly, and hence the training and test set may differ with 

each run. 

This technique can be applied to any Recommender and DataModel. To use root-mean-square 

scoring, replace AverageAbsoluteDifferenceRecommenderEvaluator with the implementation 

RMSRecommenderEvaluator. 

 Also, the null parameter to evaluate() could instead be an instance of DataModelBuilder, 

which can be used to control how the training DataModel is created from training data. Normally the 

default is fine; it may not be if you are using a specialized implementation of DataModel in your 

deployment. A DataModelBuilder is how you would inject it into the evaluation process. 

 The 1.0 parameter at the end controls how much of the overall input data is used. Here it means 

“100%.” This can be used to produce a quicker, if less accurate, evaluation by using only a little of a 

potentially huge data set. For example, 0.1 would mean 10% of the data is used and 90% is ignored. 

This is quite useful when rapidly testing small changes to a Recommender. 

 

2.4 Evaluating precision and recall 
We could also take a broader view of the recommender problem: we don't have to estimate preference 

values to produce recommendations. It’s not always necessary to present estimated preference values 

to users. In many cases, all we want is an ordered list of recommendations, from best to worst. In fact, 

in some cases we don't care much about the exact ordering of the list – a set of a few good 

recommendations is fine. 

Taking this more general view, we could also apply classic information retrieval metrics to evaluate 

recommenders: precision and recall. These terms are typically applied to things like search engines, 

which return some set of best results for a query out of many possible results. 
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A search engine should not return irrelevant results in the top results, although it should strive to 

return as many relevant results as possible. “Precision” is the proportion of top results that are relevant, 

for some definition of relevant. “Precision at 10” would be this proportion judged from the top 10 

results. “Recall” is the proportion of all relevant results included in the top results. See figure 2.3 for a 

visualization of these ideas. 

Figure 2.3 An illustration of precision and recall in the context of search results 

These terms can easily be adapted to recommenders: precision is the proportion of top 

recommendations that are good recommendations, and recall is the proportion of good 

recommendations that appear in top recommendations. We’ll define “good” in the next section. 

2.4.1 Running RecommenderIRStatsEvaluator 
Again, Mahout provides a fairly simple way to compute these values for a Recommender: 

Listing 2.4 Configuring and running a precision and recall evaluation 

RandomUtils.useTestSeed(); 
DataModel model = new FileDataModel(new File("intro.csv")); 
 
RecommenderIRStatsEvaluator evaluator = 
  new GenericRecommenderIRStatsEvaluator(); 
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() { 
  @Override 
  public Recommender buildRecommender(DataModel model)  
      throws TasteException { 
    UserSimilarity similarity = new PearsonCorrelationSimilarity(model); 
    UserNeighborhood neighborhood = 
      new NearestNUserNeighborhood(2, similarity, model); 
    return  
      new GenericUserBasedRecommender(model, neighborhood, similarity); 
  } 
}; 
IRStatistics stats = evaluator.evaluate( 
    recommenderBuilder, null, model, null, 2,  
    GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD,  
    1.0); A 
 
System.out.println(stats.getPrecision()); 
System.out.println(stats.getRecall());  
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A Evaluate precision and recall at 2 
  

Without the call to RandomUtils.useTestSeed(), the result you see would vary significantly due 

to random selection of training data and test data, and because the data set is so small here. But with 

the call, the result ought to be: 

 
0.75 
1.0 

 

Precision at 2 is 0.75; on average about a three quarters of recommendations were “good.” Recall at 

2 is 1.0; all good recommendations are among those recommended. 

But what exactly is a “good” recommendation here? Here, we actually asked the framework to 

decide. We didn’t give it a definition. Intuitively, the most highly preferred items in the test set are the 

good recommendations, and the rest aren’t. 

Listing 2.5 User 5’s preference in test data set 
5,101,4.0 
5,102,3.0 
5,103,2.0 
5,104,4.0 
5,105,3.5 
5,106,4.0 

 

Look at user 5 in our simple data set again. Let’s imagine we withheld as test data the preferences 

for items 101, 102 and 103. The preference values for these are 4.0, 3.0 and 2.0. With these values 

missing from the training data, we would hope that a recommender engine recommends 101 before 

102, and 102 before 103, because we know this is the order in which user 5 prefers these items. But 

would it be a good idea to recommend 103? It’s last on the list; user 5 doesn’t seem to like it much. 

Book 102 is just average. Book 101 looks reasonable as its preference value is well above average. 

Maybe we’d say 101 is a good recommendation; 102 and 103 are valid, but not good recommendations. 

And this is the thinking that the RecommenderEvaluator employs. When not given an explicit 

threshold that divides good recommendations from bad, the framework will pick a threshold, per user, 

that is equal to the user's average preference value µ plus one standard deviation σ: 

 

threshold = µ + σ 

 

If you’ve forgotten your statistics, don’t worry. This says we’re taking items whose preference value 

is not merely a little more than average (µ), but above average by a significant amount (σ). In practice 

this means that about the 16% of items that are most highly preferred are considered “good” 

recommendations to make back to the user. The other arguments to this method are similar to those 

discussed before and are more fully documented in the project javadoc. 
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2.5 Evaluating the GroupLens data set 
With these tools in hand, we will be able to discuss not only the speed, but also the quality of 

recommender engines that we create and modify. Although examples with large amounts real data are 

still a couple chapters away, we'll take a moment to quickly evaluate performance on a small data set. 

2.5.1 Extracting the recommender input 
GroupLens (http://grouplens.org/) is a research project that provides several data sets of different 

sizes, each derived from real users' ratings of movies. It is one of several large, real-world data sets 

available, and we will explore more of them in this book. From grouplens.org, locate and download the 

“100K data set”, currently accessible at http://www.grouplens.org/node/73. Unarchive the file you 

download, and within, find the file called ua.base. This is a tab-delimited file with user IDs, item IDs, 

ratings (preference values), and some additional information. 

Will this file work? Tabs, not commas, separate its field, and it includes an extra field of information 

at the end as well. Yes, the file will work with FileDataModel as-is. Return to the previous code in 

listing 2.3 where we built a RecommenderEvaluator, and, try passing in the location of ua.base 

instead of the small data file we constructed. Run it again. This time, evaluation should take a couple 

minutes, as it's now based on 100,000 preference values instead of a handful. 

At the end, you should get a number around 0.9. That’s not bad, though somehow being off by 

almost a whole point on a scale of 1 to 5 doesn't sound great. Perhaps the particular Recommender 

implementation we tried isn't quite the best for this kind of data? 

2.5.2 Experimenting with other Recommenders 
Let's test-drive a “slope-one” recommender on this data set, a simple algorithm that we will discuss in 

the upcoming chapter on recommender algorithms themselves. It's as easy as replacing the 

RecommenderBuilder with one that uses 

org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommeder, like so: 

Listing 2.6 Changing the evaluation program to run a SlopeOneRecommender 
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() { 
  @Override 
  public Recommender buildRecommender(DataModel model) throws TasteException { 
    return new SlopeOneRecommender(model); 
  } 
}; 

 

Run the evaluation again. You should find it is both much quicker, and, produces an evaluation result 

around 0.748. That’s a move in the right direction. 

This is not to say slope-one is always better or faster. Each algorithm has its own characteristics and 

properties that can interact in hard-to-predict ways with a given data set. Slope-one happens to be 

quick to compute recommendations at runtime, but takes significant time to pre-compute its internal 

data structures before it can start, for example. The user-based recommender we tried first could be 

faster and more accurate on other data sets. We will explore the relative virtues of each algorithm in an 

upcoming chapter. 
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It highlights how important testing and evaluation on real data are – and how relatively painless it 

can be with Mahout. Soon we will be evaluating many recommenders. 

2.6 Summary 
In this chapter we introduced the idea of a recommender engine. We even created small input to a 

simple Mahout Recommender, ran it through a simple computation and explained the results. 

We then took time to look at evaluating the quality of a recommender engine’s output, before 

proceeding, because we will need to do this frequently in the coming chapters. This chapter covered 

evaluating the accuracy of a Recommender’s estimated preferences, as well as traditional precision and 

recall metrics as applied to recommendations. Finally we tried evaluating a real data set from GroupLens 

and observed how evaluations can be used to empirically discover improvements to a recommender 

engine. 

Before studying recommender engines in detail, we need to spend some time with another 

foundational concept in Mahout in the next chapter: representation of data.  
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3 
Representing Data 

This chapter covers: 

 How Mahout represents recommender data 

 DataModel implementations and usage 

 Data without preference values 

The quality of recommendations is largely determined by the quantity and quality of data. “Garbage in, 

garbage out” was never more true than here. Likewise, recommender algorithms are data-intensive and 

runtime performance is greatly affected by quantity of data and its representation. This section explores 

key classes in Mahout for representing and accessing recommender-related data. 

3.1 Representing Preferences 
The input to a recommender engine is preference data -- who likes what, and how much. So, the 

input to Mahout recommenders is simply a set of user ID, item ID, preference value tuples – a large set, 

of course. Sometimes, even preference values are omitted. 

3.1.1 The Preference object 
A Preference is the most basic abstraction, representing a single user ID, item ID, and a preference 

value. One object represents one user's preference for one item. Preference is an interface, and the 

implementation one is most likely to use is GenericPreference. For example the following creates a 

representation of user 123’s preference value of 3.0 for item 456: new GenericPreference(123, 
456, 3.0f). 

How is a set of Preferences represented? If you gave reasonable answers like 

Collection<Preference> or Preference[], you'd be wrong in most cases in the Mahout APIs. 

Collections and arrays turn out to be quite inefficient for representing large numbers of Preference 

objects. If you’ve never investigated the overhead of an Object in Java, prepare to be shocked! 

A single GenericPreference contains 20 bytes of useful data: an 8-byte user ID (Java long), 8-

byte item ID (long), and 4-byte preference value (float). The object’s existence entails a startling 
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amount of overhead: 28 bytes! The actual amount of overhead varies depending on the JVM’s 

implementation; this figure was taken from Apple's 64-bit Java 6 VM for Mac OS X 10.6. This includes 

an 8-byte reference to the object, and, due to Object overhead and other alignment issues, another 20 

bytes of space within the representation of the object itself. Hence a GenericPreference object 

already consumes 140% more memory than it needs to, just due to overhead. 

What can be done? In the recommender algorithms, it is common to need a collection of all 

preferences associated to one user, or one item. In such a collection, the user ID, or item ID, will be 

identical for all Preference objects, which seems redundant. 

3.1.2 PreferenceArray and implementations 
Enter PreferenceArray, an interface whose implementations represent a collection of preferences 

with an array-like API. For example, GenericUserPreferenceArray represents all preferences 

associated to one user. Internally, it maintains a single user ID, an array of item IDs, and an array of 

preference values. The marginal memory required per preference in this representation is then only 12 

bytes (one more 8-byte item ID and 4-byte preference value in an array). Compare this to the 

approximately 48 bytes required for a full Preference object. The four-fold memory savings alone 

justifies this special implementation, but it also provides a small performance win, as far fewer objects 

must be allocated and examined by the garbage collector. Compare figures 3.1 and 3.2 to understand 

how the savings is accomplished. 

 

Figure 3.1 A less-efficient representation of preferences using an array of Preference objects. Gray areas represent, 
roughly, Object overhead. White areas are data, including Object references. 

Figure 3.2 A more efficient representation using GenericUserPreferenceArray. 

The code below shows typical construction and access of a PreferenceArray: 

Listing 3.1 Setting preference values in a PreferenceArray 
PreferenceArray user1Prefs = new GenericUserPreferenceArray(2); 
user1Prefs.setUserID(0, 1L); A 
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user1Prefs.setItemID(0, 101L); 
user1Prefs.setValue(0, 2.0f); B 
user1Prefs.setItemID(1, 102L); 
user1Prefs.setValue(1, 3.0f); C 
Preference pref = user1Prefs.get(1); D 

A Sets user ID for all preferences 
B User 1 expresses preference 2.0 for item 101 now 
C User 1 expresses preference 3.0 for 102 
D Materializes a Preference for item 102 

 

There exists, likewise, an implementation called GenericItemPreferenceArray, which 

encapsulates all preferences associated to an item, rather than user. Its purpose and usage are entirely 

analogous. 

3.2 Speeding up collections 
So, wonderful, Mahout has already reinvented an “array of Java objects,” you are thinking. Buckle up, 

because that’s not the end of it. Did we mention scale was important? Hopefully you are already 

persuaded that the amount of data we will face with these techniques is unusually huge, and may merit 

unusual responses. 

The reduced memory requirement that PreferenceArray and its implementations bring is well 

worth its complexity. Cutting memory requirements by 75% isn’t just saving a couple megabytes -- it’s 

saving tens of gigabytes of memory at reasonable scale. That’s the difference between fitting and not 

fitting on your existing hardware, maybe. It’s the difference between having to invest in a lot more RAM 

and maybe a new 64-bit system and not having to. That’s a small but real energy savings. It matters. 

3.2.1 FastByIDMap and FastIDSet 
You won’t be surprised to hear that the Mahout recommenders make heavy use of typical data 

structures like maps and sets, but do not use the normal Java Collections implementations like 

TreeSet and HashMap. Instead, throughout the implementation and API you will find FastByIDMap 

and FastIDSet. These are something like a Map and Set, but specialized explicitly and only for what 

Mahout recommenders need. They reduce memory footprint rather than significantly increase in 

performance. 

None of this should be construed as a criticism of the Java Collections framework. On the contrary, 

they are well designed for their purpose of being effective in a wide range of contexts. They cannot 

make many assumptions about usage patterns. Mahout’s needs are much more specific, and stronger 

assumptions about usage are available. The key differences are: 

 

 Like HashMap, FastByIDMap is hash-based. It uses linear probing, rather than separate 

chaining, to handle hash collisions. This avoids the need for an additional Map.Entry object per 
entry; as we’ve discussed, Objects consume a surprising amount of memory. 

 Keys and members are always long primitives in Mahout recommenders, not Objects. Using 
long keys saves memory and improves performance. 

 The Set implementation is not implemented using a Map underneath 

 FastByIDMap can act like a cache, as it has a notion of “maximum size”; beyond this size, 
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infrequently-used entries will be removed when new ones are added 

 

The storage difference is significant: FastIDSet requires about 14 bytes per member on average, 

compared to 84 bytes for HashSet. FastByIDMap consumes about 28 bytes per entry, compared to 

again about 84 bytes per entry for HashMap. It goes to show that when one can make stronger 

assumptions about usage, significant improvements are possible – here, largely in memory 

requirements. Given the volume of data in question for recommender systems, these custom 

implementations more than justify themselves. So, where are these clever classes used? 

3.3 In-memory DataModels 
The abstraction that encapsulates recommender input data in Mahout is DataModel. Implementations 

of DataModel provide efficient access to data required by various recommender algorithms. For 

example, a DataModel can provide a count or list of all user IDs in the input data, or provide all 

preferences associated to an item, or a count of all users who express a preference for a set of item IDs. 

Here we will focus on some of the highlights; a more detailed account of DataModel’s API can be found 

in the online javadoc documentation. 

3.3.1 GenericDataModel 
The simplest implementation available is an in-memory implementation, GenericDataModel. It is 

appropriate when you want to construct your data representation in memory, programmatically, rather 

than base it on an existing external source of data such as a file or relational database. It simply 

accepts preferences as inputs, in the form of a FastByIDMap mapping user IDs to PreferenceArrays 

with data for those users. 
 

Listing 3.2 Defining input data programmatically with GenericDataModel 
FastByIDMap<PreferenceArray> preferences =  
  new FastByIDMap<PreferenceArray>(); 
PreferenceArray prefsForUser1 = new GenericUserPreferenceArray(10); A 
prefsForUser1.setUserID(0, 1L); 
prefsForUser1.setItemID(0, 101L); B 
prefsForUser1.setValue(0, 3.0f); B 
prefsForUser1.setItemID(1, 102L); 
prefsForUser1.setValue(1, 4.5f); 
… (8 more) 
 
preferences.put(1L, prefsForUser1); C 
 
DataModel model = new GenericDataModel(preferences); D 

A Set up PreferenceArray for user 1 
B Add the first of 10 preferences 
C Attach user 1’s preference to input 
D Create the DataModel 

 

How much memory does a GenericDataModel use? The number of preferences stored dominates 

memory consumption. Some empirical testing reveals that it consumes about 28 bytes of Java heap 

space per preference. This includes all data and other supporting data structures like indexes. You can 
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try this if you like, as well: load a GenericDataModel, call System.gc() a few times, then compare 

the result of Runtime.totalMemory() and Runtime.freeMemory(). This is crude, but should give 

a reasonable estimate of how much memory the data is consuming. 

3.3.1 File-based data 
You will not typically use GenericDataModel directly. Instead, you will likely encounter it via 

FileDataModel – which reads data from a file and stores the resulting preference data in memory, in 

a GenericDataModel. 

Just about any reasonable file will do – we already saw an example of such a file in the first section, 

where we produced a simple comma-separated-value file where each line contained one datum: user 

ID, item ID, preference value. Tab-separated files will work too. zipped and gzipped files will also 

work, if their names end in “.zip” or “.gz”, respectively. It's a good idea to store this data in a 

compressed format, because it can be huge, and compresses well. 

3.3.2 Refreshable components 
While we’re talking about loading data, let’s talk about reloading data, and the Refreshable interface, 

which several components in the Mahout recommender-related classes implement. It exposes a single 

method, refresh(Collection<Refreshable>). It simply requests that the component reload, 

recompute and otherwise refresh its own state, based on the latest input data available, after asking its 

dependencies to do likewise. For example, a Recommender will likely call refresh() on the 

DataModel on which it is based before recomputing its own internal indexes of the data. Cyclical 

dependencies and shared dependencies are managed intelligently, as illustrated in figure 3.3. 

Figure 3.3 An illustration of dependencies in a simple user-based recommender system, and the order in which 
components refresh their data structures. 

Note that FileDataModel will only reload data from the underlying file when asked to do so. It will 

not automatically detect updates or regularly attempt to reload the file’s contents, for performance 

reasons. This is what the refresh() method is for. We probably don’t want to just cause a 

FileDataModel to refresh, but also any objects that depends on its data. For this reason, you will 

almost surely call refresh() on a Recommender in practice: 

 

Listing 3.3 Triggering refresh of a recommender system 
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DataModel dataModel = new FileDataModel(new File("input.csv"); 
Recommender recommender = new SlopeOneRecommender(dataModel); 
... 
recommender.refresh(null); A 

A Refreshes the DataModel, then itself 
Because scale is a pervasive theme of this book, here we should emphasize another useful feature of 

FileDataModel: “update files”. Data changes, and usually the data that changes is only a tiny subset 

of all the data – maybe even just a few new data points, in comparison to a billion existing ones. 

Pushing around a brand new copy of a file containing a billion preferences just to push a few updates is 

wildly inefficient. 

3.3.3 Update files 
FileDataModel supports update files. These are just more data files which are read after the main 

data file, and overwrite any previously read data. New preferences are added; existing ones are 

updated. “Deletes” are handled by providing an empty preference value string. 

For example, consider the following update file. 

Listing 3.4 Sample update file 
1,108,3.0 
1,103, 

 

This says, “update (or create) user 1's preference for item 108, and set the value to 3.0” and 

“remove user 1's preference for item 103”. 

These update files must simply exist in the same directory as the main data file, and their names 

must begin with the same prefix, up to the first period. If the main data file is foo.txt.gz, then 

update files might be named foo.1.txt.gz and foo.2.txt.gz. Yes, they may be compressed. 

3.4 Database-based data 
Sometimes data is just too large to fit into memory. Once the data set is several tens of millions of 

preferences, memory requirements grow to several gigabytes. This amount of memory may be 

unavailable in some contexts. 

It is possible to store and access preference data from a relational database; Mahout supports this. 

Several classes in Mahout's recommender implementation will attempt to take advantage by pushing 

computations into the database for performance. 

Note that running a recommender engine from data in a database will be much slower, by orders of 

magnitude, than using in-memory data representations. It’s no fault of the database; properly tuned 

and configured, a modern database is excellent at indexing and retrieving information efficiently, but 

the overhead of retrieving, marshalling, serializing, transmitting and deserializing result sets is still 

much greater than the overhead of reading data from optimized in-memory data structures. This adds 

up quickly for recommender algorithms, which are data intensive. It may yet be desirable in cases 

where there is no choice, or, where the data set is not huge and reusing an existing table of data is 

desirable for integration purposes. 
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3.4.1 JDBC and MySQL 
Preference data is accessed via JDBC, using implementations of JDBCDataModel. At the moment, the 

only concrete subclass of JDBCDataModel is one written for use with MySQL 5.x: 

MySQLJDBCDataModel. It may well work with older versions of MySQL, or even other databases, as it 

tries to use standard ANSI SQL where possible. It is not difficult to create variations, as needed, to use 

database-specific syntax and features. Here, we will explore the MySQL implementation here to 

illustrate. 

Table 3.1 Illustration of default table schema for ‘taste_preferences’ in MySQL 

user_id item_id preference 
BIGINT NOT NULL BIGINT NOT NULL FLOAT NOT NULL 

INDEX INDEX  

PRIMARY KEY  

 

By default, the implementation assumes that all preference data exists in a table called 

taste_preferences, with a column for user IDs named user_id, column for item IDs named 

item_id, and column for preference values named preference.  

3.4.2 Configuring via JNDI 
It also assumes that the database containing this table is accessible via a DataSource object 

registered to JNDI3

Listing 3.5 Configuring a JNDI DataSource in Tomcat 

 name jdbc/taste. What is JNDI, you may be asking? If you are using a 

recommender engine in a web application, and are using a servlet container like Tomcat or Resin, then 

you are likely already using it indirectly. If you are configuring your database details through the 

container (such as through Tomcat’s server.xml file) then you will find that typically makes this 

configuration available as a DataSource in JNDI. You can configure a database as jdbc/taste with 

details about the database that the JDBCDataModel ought to use. Here’s a snippet suitable for use 

with Tomcat: 

<Resource 
  name="jdbc/taste" 
  auth="Container" 
  type="javax.sql.DataSource" 
  username="user" 
  password="password" 
  driverClassName="com.mysql.jdbc.Driver" 
  url="jdbc:mysql://localhost:3306/mydatabase"/> 

 

These default names can be overridden to reflect your environment. You don’t have to name your 

database and column exactly as above. 

                                                   
 
3 Java Naming and Directory Interface; a key part of Sun’s J2EE (Java 2 Enterprise Edition) specification 
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3.4.3 Configuring programmatically 
You also don’t have to use JNDI directly and can instead pass a DataSource in directly. Here's a full 

example of configuring a MySQLJDBCDataModel, including use of the MySQL Connector/J 

(http://www.mysql.com/products/connector/) driver and DataSource with customized table and 

column names: 

 

Listing 3.6 Configuring a DataSource programmatically 
MysqlDataSource dataSource = new MysqlDataSource(); 
dataSource.setServerName("my_user"); 
dataSource.setUser("my_password"); 
dataSource.setPassword("my_database_host"); 
JDBCDataModel dataModel = new MySQLJDBCDataModel( 
  dataSource, "my_prefs_table", "my_user_column",  
  "my_item_column", "my_pref_value_column"); 

 

This is all that’s needed to use data in a database for recommendations. You’ve now got a 

DataModel compatible with all the recommender components! However, as the documentation for 

MySQLJDBCDataModel makes clear, producing the recommendations efficiently requires proper 

configuration of the database and the driver. In particular: 

 

The user ID and item ID columns should be non-nullable, and must be indexed. 

The primary key must be a composite of user ID and item ID. 

Select data types for the columns that correspond to Java's long and float types. In MySQL, these 

are BIGINT and FLOAT. 

Look to tuning the buffers and query caches (see javadoc) 

When using MySQL's Connector/J driver, set driver parameters such as 

cachePreparedStatements to true. Again, see the javadoc for suggested values. 

 

This certainly covers the basics of working with DataModels in Mahout’s recommender engine 

framework. One significant variant on these implementations should be discussed: representing data 

when there are no preference values. This may sound strange, because it seems like preference values 

are the core of the input data required by a recommender engine. Sometimes ignoring some data helps. 

3.5 Ignoring preference values 
Less is more, they say. Sometimes this is true about the input to a recommender engine. More data is 

generally better -- if it is “good” data. Unfortunately, sometimes preference values are noisy, and simply 

forgetting the particular values is useful. At least, sometimes, it doesn’t hurt. 

We aren’t talking about forgetting all associations between users and items, for then we would have 

no data at all. We’re talking about ignoring the purported strength of the preference. For example, 

rather than consider what movies you all have seen and how you’ve rated them to recommend a new 

movie, we might do as well to simply consider what movies you have seen. Rather than know “user 1 

expresses preference 4.5 for movie 103”, we might try forgetting the 4.5 and taking, as input, data like 

“user 1 is associated to movie 103.” Figure 3.4 attempts to illustrate the difference. 
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Figure 3.4 An illustration of user relationships to items with preference values (left) and “boolean data”, without 
preference values (right) 

In Mahout-speak, we will call these “boolean preferences,” for lack of a better term, because an 

association can have one of two values: exists, or doesn’t exist. We do not mean that the data consists 

of “yes” and “no” preferences for items, that each datum expresses whether a user “likes” or “dislikes” 

an item. This would give three states for every possible user-item association: likes, dislikes, or nothing 

at all.  

3.5.1 When to ignore values 
Why would one do this, ignore preference values? Most commonly, this happens when preference values 

aren’t available to begin with. For example, imagine a news site recommending articles to users based 

on previously viewed articles. A “view” establishes some association between the user and item, but 

that’s about all that is available. It is not common for users to rate articles. It’s not even common for 

users to do anything more than view an article. All that’s known in this case is which articles the user is 

associated to, and little more. 

This might be beneficial in a context where liking and not-liking an item are relatively similar states, 

at least when compared with having no association at all. Remember the example about the fellow who 

doesn’t like Rachmaninoff? There is a vast world of music out there, some of which he’s never even 

heard of (like Norwegian death metal). That he even knows Rachmaninoff enough to dislike it indicates 

an association to this composer, even a possible preference for things like it, that’s significant when 

considered in comparison to the vast world of things he doesn’t even know about. Although he might 

rate Rachmaninoff a “1” and Brahms a “5”, if pressed to do so, in reality these both communicate 

something similar. Forgetting the actual ratings, therefore, reflects that fact and may even make for 

better recommendations. 

You may object that this is the user’s fault. Shouldn’t he think of Rachmaninoff as a “4”, because it’s 

stuff like Norwegian death metal that’s conceptually a “1” to him? Maybe so, but that’s life. This only 

underscores the fact that input is often problematic. You may also object that, although this reasoning 

stands up when recommending music taken from all genres, that we’d probably do worse by forgetting 

this data if we were just recommending from classical composers. This is true; a good solution for one 

domain does not always translate to others. 
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3.5.2 In-memory representations without preference values 
Not having preference values dramatically simplifies the representation of preference data, and this 

enables better performance and significantly lower memory usage. As we saw, Mahout Preference 

objects store the preference value as a 4-byte float in Java. At least, not having preference values in 

memory ought to save 4 bytes per preference values.  Indeed, repeating the same rough testing as 

before shows the overall memory consumption per preference drops by about 4 bytes to 24 bytes on 

average. 

We get this value by testing the twin of GenericalDataModel, called 

GenericBooleanPrefDataModel.  This is likewise an in-memory DataModel implementation, but 

one which internally does not store preference values. In fact it simply stores associations as 

FastIDSets -- for example, one for each user, to represent the item IDs that that user is associated 

to. No preference values are found. 

Because it is also a DataModel, it is a drop-in replacement for GenericDataModel. Some 

methods of DataModel will be faster with this new implementation, such as getItemIDsForUser(), 

because the implementation already has this readily available. Some will be slower such as 

getPreferencesFromUser(), because the new implementation does not use PreferenceArrays 

and must materialize one to implement the method. 

You may wonder what getPreferenceValue() returns, because there is no such thing to this 

implementation? It doesn’t throw UnsupportedOperationException; it returns the same fixed, 

artificial value in all cases: 1.0. This is important to note, because components that rely on a preference 

value will still get one from this DataModel. These preference values are artificial and fixed, which can 

cause some subtle issues, as we will soon see. 

Let’s observe, by returning to the GroupLens example from the last chapter. Here is the same code 

snippet that we began with, but set up to use a GenericBooleanPrefDataModel: 

Listing 3.7 Creating and evaluating with boolean data 
DataModel model = new GenericBooleanPrefDataModel( 
  new FileDataModel(new File("ua.base"))); A 
 
RecommenderEvaluator evaluator =  
  new AverageAbsoluteDifferenceRecommenderEvaluator(); 
 
  RecommenderBuilder builder = new RecommenderBuilder() { 
    @Override 
    public Recommender buildRecommender(DataModel model)  
        throws TasteException { 
      UserSimilarity similarity = new PearsonCorrelationSimilarity(model); 
      UserNeighborhood neighborhood = 
        new NearestNUserNeighborhood(10, similarity, model); 
      return  
        new GenericUserBasedRecommender(model, neighborhood, similarity); 
    } 
  }; 
 
  DataModelBuilder modelBuilder = new DataModelBuilder() { 
    @Override 
    public DataModel buildDataModel( 
        FastByIDMap<PreferenceArray> trainingData) { 
      return new GenericBooleanPrefDataModel( 
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        GenericBooleanPrefDataModel.toDataMap(trainingData)); B 
    } 
  }; 
 
  double score = evaluator.evaluate( 
    recommenderBuilder, modelBuilder, model, 0.9, 1.0); 
  System.out.println(score); 

A Use GenericBooleanPrefDataModel, based on same data 
B Build a GenericBooleanPrefDataModel here too 

 

The twist here is the DataModelBuilder. This is the way we can control how the evaluation 

process will construct its DataModel for training data, rather than let it construct a simple 

GenericDataModel. GenericBooleanPrefDataModel takes its input in a slightly different way -- a 

bunch of FastIDSets rather than PreferenceArrays -- and the convenience method toDataMap() 

exists to translate between the two. Before proceeding to the next section, we suggest you try running 

this code. 

3.5.3 Selecting compatible implementations 
To be clear: the following section is largely about what not to do! 

You may be surprised to see the evaluation result is NaN, or “not a number”. Here, it means that the 

evaluation couldn’t come up with any data on which to base a score at all! If you were to debug, you 

would find that the recommender is estimating all preferences to be NaN too. And if you dug deeper 

still, you would find that no neighborhoods of similar users can be found for any user, and this is 

because the PearsonCorrelationSimilarity metric is returning NaN as the similarity between 

every pair of users -- unknown! 

This highlights a specific point about this Pearson correlation, which we will cover in the next 

chapter. It makes a more general point as well. The specific problem here is that we’re applying a 

similarity metric based on preference values, the Pearson correlation, in a situation where there aren’t 

any real preference values. The Pearson correlation between two data sets will be undefined if the two 

data sets are simply the same value, repeated4

More generally, not every implementation will work well with every other, even though components 

are implementing a set of standard interfaces for interchangeability. The “incompatibility” here was clear 

from the evaluation; some other interactions are subtler. 

. And here, the DataModel pretends that all preference 

values are 1.0. 

3.5.4 Applying appropriate similarity metrics 
We can fix the immediate problem by applying a more suitable similarity metric. 

LogLikelihoodSimilarity is one such implementation, because it is not based on actual preference 

values. We’ll discuss these similarity metrics later. Plug it in, in place of 

PearsonCorrelationSimilarity. The result is, at least, a number: 0.0. Wow, that means perfect 

prediction! 

                                                   
 
4 The Pearson correlation is a ratio of the covariance of the two data sets, to their standard deviations, and when all data are 1, 
both of these values are 0, giving a correlation of 0/0, which is certainly “not a number” as far as Java is concerned. 
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Not quite. We’re evaluating the average difference between estimated and actual preference, in a 

world where every preference value is 1. Of course the result is 0; the test itself is invalid because it will 

only ever result in 0. 

However a precision and recall evaluation is still valid. Let’s try it. 

Listing 3.8 Evaluating precision and recall with boolean data 
DataModel model = new GenericBooleanPrefDataModel( 
    new FileDataModel(new File("ua.base"))); 
 
RecommenderIRStatsEvaluator evaluator = 
  new GenericRecommenderIRStatsEvaluator(); 
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() { 
  @Override 
  public Recommender buildRecommender(DataModel model) { 
    UserSimilarity similarity = new LogLikelihoodSimilarity(model); 
    UserNeighborhood neighborhood = 
      new NearestNUserNeighborhood(10, similarity, model); 
    return new GenericBooleanPrefUserBasedRecommender( 
        model, neighborhood, similarity); 
  } 
}; 
DataModelBuilder modelBuilder = new DataModelBuilder() { 
  @Override 
  public DataModel buildDataModel(FastByIDMap<PreferenceArray> trainingData) { 
    return new GenericBooleanPrefDataModel( 
      GenericBooleanPrefDataModel.toDataMap(trainingData)); 
  } 
}; 
IRStatistics stats = evaluator.evaluate( 
    recommenderBuilder, modelBuilder, model, null, 10, 
    GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 
    1.0); 
System.out.println(stats.getPrecision()); 
System.out.println(stats.getRecall()); 

 
The result is about 15.5% for both precision and recall. That’s not great; recall that this means only 

about 1 in 6 recommendations returned are “good” and about 1 in 6 good recommendations are 

returned. 

 This is traceable to a third problem, illustrated here. Preference values are still lurking in one place 

here: GenericUserBasedRecommender. Of course, it still orders its recommendations based on 

estimate preference, but these values are all 1.0. The ordering is therefore essentially random. So, we 

introduce GenericBooleanPrefUserBasedRecommender (yes, that’s about as long as the class 

names will get). This variant will produce a more meaningful ordering in its recommendations. It 

weights items that are associated to many other similar users, and to users that are more similar, more 

heavily. It does not produce a weighted average. So, try substituting this implementation and run the 

code again. The result is 18% or so. Better, but barely. This strongly suggests this isn’t a terribly 

effective recommender system for this data. Our purpose here isn’t to “fix” this, merely to look at how 

to effectively deploy “boolean” data in Mahout recommenders. 
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Boolean variants of the other DataModels we’ve seen so far exist as well. FileDataModel will 

automatically use a GenericBooleanPrefDataModel internally, if its input data contains no 

preference values (lines of the form userID,itemID only). Similarly, MySQLBooleanPrefDataModel 

is suitable for use with a database table without a preference value column. It’s otherwise entirely 

analogous. This implementation in particular can take advantage of many more shortcuts in the 

database to improve performance. 

Finally, if you’re wondering if you can mix boolean and non-boolean data: no. In such a case, it’s 

desirable to treat the data set as having preference values, since some preference values do exist. 

Those missing an actual preference value can and should be inferred by some means, even if it’s as 

simple as filling in the simple average of all existing preference values as a placeholder. 

3.6 Summary 
In this chapter we looked at how preference data is represented in a Mahout recommender. This 

includes Preference objects, but also specialized array and collection-like implementations like 

PreferenceArray and FastByIDMap. These specializations exist largely to reduce memory usage. 

We looked at DataModels, which are the abstraction for recommender input as a whole. 

GenericDataModel stores data in memory, as does FileDataModel, after reading input from a file. 

JDBCDataModel and implementations exist to support data based on a relational database table; we 

examined integration with MySQL in particular. 

Finally we looked at how all this changes when the input data does not contain preference values -- 

only user-item associations. Sometimes this is all that is available, and, it certainly requires less 

storage. We looked at subtle complications that this sort of data model can cause when used with other 

standard components, such as PearsonCorrelationSimilarity, which are not suitable for this kind 

of input. We examined several such problems and fixed them in order to get a functioning recommender 

based on boolean input data. 
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4 
Making Recommendations 

This chapter covers 

 User-based recommenders, in depth 

 Similarity metrics 

 Item-based and other recommenders 

Having thoroughly discussed evaluating recommenders and representing the data input to 

recommender, we are at last qualified to examine recommenders themselves in detail. This is where the 

real action begins. 

4.1 User-based recommendation 
If you've seen a recommender algorithm explained, chances are it was a user-based recommender 

algorithm. This is the approach described in some of the earliest research in the field. The label “user-

based” is somewhat imprecise, as any recommender algorithm is based on user- and item-related data. 

The defining characteristic of a user-based recommender algorithm is that it is based upon some notion 

of similarities between users. In fact, you’ve probably encountered this type of “algorithm” in everyday 

life. 

4.1.1 When recommendation goes wrong 
Have you ever received a CD as a gift? I did, as a young teenage boy, by well-meaning adults. One of 

these adults seem to have headed down to the local music store and cornered an employee, where the 

following scene unfolded:  

ADULT: I am looking for a CD for a teenager. 

EMPLOYEE: OK, what does this teenager like? 

ADULT: Oh, you know, what all the young kids like these days.  
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EMPLOYEE: What kind of music or bands? 

ADULT: It's all noise to me. I don't know. 

EMPLOYEE: Uh, well… I guess lots of young people are buying this boy band album 

here by “New 2 Town”? 

ADULT: Sold! 

 

You can guess the result. Needless to say, they instead give me gift certificates now. I am afraid this 

example of user-based recommendation gone wrong has played out many times. What happened? The 

intuition was sound: because teenagers have relatively related tastes in music, one teenager would be 

more likely to enjoy an album that other teenagers have enjoyed. Basing recommendations on similarity 

among people is quite reasonable.  

Of course, recommending an album from a band that teenage girls swoon over probably isn’t the 

best thing for a teenage boy. The error here was that the similarity metric wasn't effective. Yes, 

teenagers as a group have relatively homogenous tastes: you're more likely to find pop songs than 

zydeco or classical music. But, the similarity is too weak to be useful: it’s not true that teenage girls 

have enough in common with teenage boys when it comes to music to form the basis of a 

recommendation. 

4.1.2 When recommendation goes right 
Let's rewind our scenario and imagine how it could have gone better: 

ADULT: I am looking for a CD for a teenage boy. 

EMPLOYEE: OK, what does he like? 

ADULT: Oh, you know, he likes what all the young kids like these days.  

EMPLOYEE: What kind of music or bands? 

ADULT: I don't know, but his best friend is always wearing a “Bowling In Hades” t-

shirt. 

EMPLOYEE: Ah yes, a very popular nu-metal band from Cleveland. Well, we do have 

the new Bowling In Hades best-of album over here, “Impossible Split: The Singles 

1997-2000”... 

 

Now that's better. The recommendation was based on the assumption that two good friends share 

somewhat similar taste in music. That’s more reasonable. With a reliable similarity metric in place, the 

outcome is probably better. It's far more likely that these best friends share a love for Bowling In Hades 

than any two random teenagers. Here's another way it could have gone better: 
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ADULT: I am looking for a CD for a teenage boy. 

EMPLOYEE: OK, what does he like? 

ADULT: Oh, you know, he likes what all the young kids like these days.  

EMPLOYEE: What kind of music or bands? 

ADULT: “Music”? Ha, well, I wrote down the bands from posters on his bedroom wall. 

The Skulks, Rock Mobster, the Wild Scallions... mean anything to you? 

EMPLOYEE: I see, well, my kid is into some of those albums too. And he won't stop 

talking about some new album from Diabolical Florist, so maybe... 

 

Well done, adults. Now, they've inferred a similarity based directly on tastes in music. Because the 

two kids in question both prefer some of the same bands, it stands to reason they'll each like a lot in the 

rest of each other’s collections. That’s even better reasoning than guessing their tastes are similar 

because they’re friends. They’ve actually based their idea of similaritybetween the two teenagers on 

observed tastes in music. This is the essential logic of a user-based recommender system. 

4.2 Exploring the user-based recommender 
If we let these two adults keep going, they'd further refine their reasoning. Why base the choice of gift 

on just one other kid's music collection? How about finding several other similar kids? They would pay 

attention to which kids seemed most similar – most same posters and t-shirts and CDs scattered on top 

of stereos – and look at which bands seemed most important to those most similar kids, and figure 

those make the best gift. 

4.2.1 The algorithm 
The user-based recommender algorithm comes out of this intuition. We might describe the process of 

recommending items to some user, denoted by u, like so: 
 
for every item i that u has no preference for yet 
  for every other user v that has a preference for i 
    compute a similarity s between u and v 
    incorporate v's preference for i, weighted by s, into a running average 
return the top items, ranked by weighted average 

 

The outer loop simply suggests we should consider every known item (that the user hasn’t already 

expressed a preference for -- they’re already well aware of those items and what they think of them) as 

a candidate for recommendation. The inner loop suggests we look to any other user who has expressed 

a preference for this candidate item, and see what his or her preference value for it was. In the end, we 

average these values to come up with an estimate -- a weighted average, that is. We weight each 

preference value in the average by how similar that user is to our target user. The more similar a user, 

the more heavily we weight his or her preference value. 
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It would be terribly slow to examine every item. In reality, first, a “neighborhood” of most similar 

users it computed first, and only items known to those users are considered 

 
for every other user v 
  compute a similarity s between u and v 
  retain the top users, ranked by similarity, as a “neighborhood” n 
for every item i that some user in n has a preference for,  
      but that u has no preference for yet 
  for every other user v in n that has a preference for i 
    compute a similarity s between u and v 
    incorporate v's preference for i, weighted by s, into a running average  

   

The primary difference is that we find the similar users first, and see what those most-similar users 

are interested in first, and then take those items as our candidates. The rest is the same. This is the 

standard user-based recommender algorithm.  

4.2.2 Implementing the algorithm with GenericUserBasedRecommender 
We have already seen a user-based recommender in action, in the very first example. Let's return to it, 

in order to explore the components in use and see how well it performs. 

Listing 4.1 Revisiting of a simple user-based Recommender system 
DataModel model = new FileDataModel(new File("intro.csv")); 
UserSimilarity similarity = new PearsonCorrelationSimilarity(model); 
UserNeighborhood neighborhood = 
  new NearestNUserNeighborhood(2, similarity, model); 
Recommender recommender = 
  new GenericUserBasedRecommender(model, neighborhood, similarity); 

 

UserSimilarity encapsulates some notion of similarity amongst users. And, UserNeighborhood 

encapsulates some notion of a group of most-similar users. These are necessary components of the 

standard user-based recommender algorithm. 

There isn't only one possible notion of similarity – we already discussed a few real-world ideas of 

similarity above. There are also many ways to define a neighborhood of most similar users: the 5 most 

similar? 20? Users with a similarity above a certain value? To illustrate these, imagine you’re creating a 

guest list for your wedding. You want to invite your closest friends and family to this special occasion, 

but you have far more friends and family than your budget will allow. Would you decide who is and isn’t 

invited by picking a size first -- say 50 people -- and picking your 50 closest friends and family? Is 50 

the right number, or 40 or 100? Or would you invite everyone who you consider “close”? Should you 

only invite your “really close” friends? Which one will give the best wedding party? This is analogous to 

the decision you make when deciding how to pick a neighborhood of similar users. 

Plug in new ideas of similarity and you get quite different results. You can begin to see that there is 

not merely one way to produce recommendations – and we're still looking at one facet of one approach 

that can be adjusted. As you will see, Mahout is not one recommender engine at all, but an assortment 

of components that may be plugged together and customized to create an ideal recommender for a 

particular domain. Here we’ve put together the following components: 

 Data model implemented via DataModel 
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 User-user similarity metric implemented via UserSimilarity 

 User neighborhood definition implemented via UserNeighborhood 

 Recommender engine implemented via a Recommender: here, 
GenericUserBasedRecommender 

 As you will see through the rest of the book, getting good results, and getting them fast, is 

inevitably a long process of experimentation and refinement. 

4.2.3 Exploring with GroupLens 
Let’s return to the GroupLens data set and up the ante. This time we will use 100 times more data. We 

promised scale, right? Return to http://grouplens.org and download the 10 million rating data set, which 

is currently available at http://www.grouplens.org/node/73. Unpack it locally and locate the 

ratings.dat file inside. 

For whatever reason, the format of this data is different from the 100,000 rating data set we had 

used before. Whereas its ua.base file was ready for use with FileDataModel, this data set’s 

ratings.dat file is not. It would be simple to use standard command-line text-processing utilities to 

convert it to a comma-separated form, and in general, this is the best approach. Writing custom code to 

convert the file format, or a custom DataModel, is tedious and error prone. 

Luckily, in this particular case there's an easier solution: Mahout's examples module includes the 

custom implementation GroupLensDataModel, which extends FileDataModel to read this file. Make 

sure you have included the code under the examples/ directory in your project in your IDE. Then, 

swap out FileDataModel for this alternative: 

Listing 4.2 Updating to use a custom DataModel for GroupLens 
DataModel model = new GroupLensDataModel(new File("ratings.dat")); 
UserSimilarity similarity = new PearsonCorrelationSimilarity(model); 
UserNeighborhood neighborhood = 
  new NearestNUserNeighborhood(100, similarity, model); 
Recommender recommender =  
  new GenericUserBasedRecommender(model, neighborhood, similarity); 
LoadEvaluator.runLoad(recommender); 

 

Run this, and the first thing you will likely encounter is an OutOfMemoryError. Ah, a first sighting 

of issues of scale. By default, Java will not grow its heap past a certain modest size. We need to 

increase the amount of heap space available to Java. 

 This is a good first opportunity to discuss what can be done to improve performance by tuning the 

JVM. Refer to Appendix A at this point for a more in-depth discussion of JVM tuning. 

4.3 Exploring user neighborhoods 
Let's next evaluate the recommender accuracy. Yes, we’ve done this before; we’ll present the 

boilerplate evaluation code one more time, but, going forward, we figure you’ve got the hang of it and 

can construct and run evaluations on your own. 

Now, we look at possibilities for configuring and modifying the neighborhood implementation. 

Remember, we’re also using 100 times more data as well. 
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Listing 4.3 Running an evaluation on the simple Recommender 
DataModel model = new GroupLensDataModel(new File("ratings.dat")); 
RecommenderEvaluator evaluator = 
  new AverageAbsoluteDifferenceRecommenderEvaluator(); 
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() { 
  @Override 
  public Recommender buildRecommender(DataModel model) throws TasteException { 
    UserSimilarity similarity = new PearsonCorrelationSimilarity(model); 
    UserNeighborhood neighborhood = 
      new NearestNUserNeighborhood(100, similarity, model); 
    return new GenericUserBasedRecommender(model, neighborhood, similarity); 
  } 
}; 
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.95, 0.05); 
System.out.println(score); 

 

Note how the final parameter to evaluate() is 0.05. This means only 5% of all the data is used for 

evaluation. This is purely for convenience; evaluation is a time-consuming process and using this full 

data set, could take hours to complete. For purposes of quickly evaluating changes, it's convenient to 

reduce this value. We shouldn’t push it down too far, as using too little data might compromise the 

accuracy of the evaluation result. The parameter 0.95 simply says to build a model to evaluate with 

95% of the data, and then test with the remaining 5%. After running this, your evaluation result will 

vary, but should likely be around 0.89. 

4.3.1 Fixed-size neighborhoods 
At the moment, the recommendations are derived from a neighborhood of the 100 most similar users 

(see use of NearestNUserNeighborhood with neighborhood size 100). We’ve arbitrarily decided that 

we will always use the 100 users whose similarity is greatest in order to make recommendations. What 

if this were 10? We'd base recommendations on fewer similar users, but would exclude some less-

similar users from consideration. 

 

 

Figure 4.1 An illustration of defining a neighborhood of most similar users by picking a fixed number of closest 
neighbors. Here, distance illustrates similarity: farther means less similar. In this picture, neighborhood around user 1 is 
chosen to consist of the three most similar users: 5, 4, and 2. 

Try this change -- replace 100 with 10. The result of the evaluation, the average difference between 

estimated and actual preference value, is 0.98 or so. Recall that larger evaluation values are worse, so 
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that’s a move in the wrong direction. The most likely explanation is that 10 users are too few. It’s likely 

that the eleventh and twelfth most similar users and so on add value. They are still quite similar, and, 

are associated to items that the first 10 most similar users weren't. 

We could go the other direction, and try a neighborhood of 500 users; the result drops to 0.75, 

which is of course better. We could evaluate many values and figure out the optimal setting for this data 

set. For brevity, we won't, but rather continue musing about the recommender. The lesson is that there 

is no magic value; some experimentation with real data is necessary to tune your recommender. 

4.3.2 Threshold-based neighborhood 
What if we don't want to build a neighborhood of the n most similar users, but rather try to pick the 

“pretty similar” users and ignore everyone else? We could pick a similarity threshold and take any users 

that are at least that similar. 

The threshold should be between -1 and 1, since all similarity metrics return similarity values in this 

range. At the moment, we use a standard Pearson correlation as the similarity metric. Those familiar 

with this correlation would likely agree that a value of 0.7 or above is a “high correlation” and 

constitutes a sensible definition of “pretty similar.” So, we now switch to use 

ThresholdUserNeighborhood. It's as simple as changing one line to new 
ThresholdUserNeighborhood(0.7, similarity, model) where we have created the 

UserSimilarity implementation in our evaluation code. 

Now the evaluator scores our recommender at 0.84. What if we make the neighborhood more 

selective by choosing a threshold of 0.9? The score worsens to 0.92; it’s likely that the same 

explanation applies. How about 0.5? The score improves to 0.78. We will use a threshold-based 

neighborhood with threshold 0.5 for the examples that follow. 

Figure 4.2 An illustration of defining a neighborhood of most-similar users with a similarity threshold. 

Again, you would likely want to explore many more values on real data to determine an optimum, 

but already we've improved estimation accuracy by about 15% with some simple tinkering. 

4.4 Exploring similarity metrics 
We continue the survey of user-based recommenders by examining changes to the most important part: 

the UserSimilarity implementation. A user-based recommender relies most of all on this 

component. Without a reliable and effective notion of which users are similar to others, this approach 

falls apart. 
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4.4.1 Pearson correlation-based similarity 
So far, we have used the PearsonCorrelationSimilarity, which is a similarity metric based on 

the Pearson correlation. The Pearson correlation is a number between -1 and 1. It measures the 

tendency of two series of numbers, paired up one-to-one, to move together. That is to say, it measures 

how much a number in one series to be relatively large when the corresponding number in the other 

series is high, and vice versa. To be exact, it measures the tendency of the numbers to move together 

proportionally, such that there is a roughly linear relationship between the values in one series and the 

other. When this tendency is high, the correlation is close to 1. When there appears to be little 

relationship at all, the value is near 0. When there appears to be an opposing relationship -- one series’ 

numbers are high exactly when the other series’ numbers are low -- the value is near -1. 

This concept, widely used in statistics, can be applied to users to measure their similarity. We use it 

to measure the tendency of two users' preference values to move together – to be relatively high, or 

relatively low, on the same items. For an example, look back to the first sample data file we created: 

Listing 4.4 Restatement of simple recommender input file 
1,101,5.0 
1,102,3.0 
1,103,2.5 
 
2,101,2.0 
2,102,2.5 
2,103,5.0 
2,104,2.0 
 
3,101,2.5 
3,104,4.0 
3,105,4.5 
3,107,5.0 
 
4,101,5.0 
4,103,3.0 
4,104,4.5 
4,106,4.0 
 
5,101,4.0 
5,102,3.0 
5,103,2.0 
5,104,4.0 
5,105,3.5 
5,106,4.0 

 

We noted that users 1 and 5 seem similar since their preferences seem to run together. On items 

101, 102, and 103, they roughly agree: 101 is the best, 102 somewhat less good, and 103 isn’t 

desirable. By the same reasoning users 1 and 2 are not so similar. Note that we can’t really include 

items 104 through 106 in our reasoning about user 1, since we don’t know anything about user 1’s 

preference for 104 through 106. As far as we’re concerned, the similarity computation can only operate 

on items that both users have expressed a preference for. In an upcoming section, we’ll look at what 

happens when we infer “missing” preference values like this. 
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The Pearson correlation captures these notions, as can be seen from the table 4.2. We don’t 

reproduce the details of the computation here; refer to other sources for a complete explanation of how 

the correlation is computed. 

Table 4.2 This table shows the Pearson correlation between user 1 and other users (note that a user’s 
correlation with itself is always 1.0) based on the three items that user 1 has in common with the others. 

 Item 101 Item 102 Item 103 Correlation with User 1 

User 1 5.0 3.0 2.5 1.000 

User 2 2.0 2.5 5.0 -0.764 

User 3 2.5 - - - 

User 4 5.0 - 3.0 1.000 

User 5 4.0 3.0 2.0 0.945 

 

4.4.2 Pearson correlation problems 
While the results are indeed intuitive, the Pearson correlation has some quirks in the context of 

recommender engines. It doesn't take into account the number of items in which two users' preferences 

overlap, which is probably a weakness in the context of recommender engines. Two users that have 

seen 200 of the same movies, for instance, even if they don't often agree on ratings, are probably more 

similar than two users who have only ever seen 2 movies in common. This issue appears in a small way 

in the data above; note that users 1 and 5 have both expressed preferences for all three items, and 

seem to have similar tastes. Yet, users 1 and 4 have a higher correlation of 1.0, based on only two 

overlapping items. This seems a bit counterintuitive. 

If two users overlap in only one item, no correlation can be computed, because of how the 

computation is defined. This is why no correlation can be computed between users 1 and 3. This could 

be an issue for small or sparse data sets, in which users item sets rarely overlap. Or, one could also 

view it as a benefit: two users that overlap in only one item are, intuitively, not very similar anyway. 

The correlation is also undefined if either series of preference values are all identical -- we noted this 

problem before. For example, if user 5 had expressed a preference of 3.0 for all three items above, we 

could not compute a similarity between 1 and 5 since the Pearson correlation would be undefined. This 

is likewise most probably an issue when users rarely overlap with others in the items they’ve expressed 

any preference for.  

While the Pearson correlation commonly appears with recommenders in early research papers (see 

http://lucene.apache.org/mahout/taste.html), and appears in introductory books on recommenders, it is 

not necessarily a good first choice. It’s not necessarily bad, either; it simply bears understanding how it 

works. 

4.4.3 Employing weighting 
PearsonCorrelationSimilarity provides an “extension” to the standard computation, called 

weighting, that mitigates one of the issues above. The Pearson correlation does not reflect, directly, the 
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number of items over which it is computed. For our purposes that would be desirable: when based on 

more information, the resulting correlation would be a more reliable result. In order to reflect this, we’d 

like to push positive correlation values towards 1.0, and negative values towards -1.0, when the 

correlation is based on more items. Alternatively, you could imagine pushing the correlation values 

towards some mean preference value when the correlation is based on fewer items; the effect would be 

similar, but the implementation somewhat more complex as it would require tracking what the mean 

preference value is for pairs of users. 

In listing 4.3, passing the value Weighting.WEIGHTED to the constructor of 

PearsonCorrelationSimilarity as the second argument does this. It will cause the resulting 

correlation to be pushed towards 1.0, or -1.0, depending on how many data points where used to 

compute the correlation value. A quick re-run of the evaluation framework reveals that, in this case, this 

setting improves the score slightly to 0.77. 

4.4.4 Defining similarity by Euclidean distance 
Let's try EuclideanDistanceSimilarity -- swap in a different implementation by simply changing 

the UserSimilarity implementation used in listing 4.3 to new 
EuclideanDistanceSimilarity(model) instead. 

This implementation is based on the “distance” between users. This idea makes sense if you think of 

users as points in a space of many dimensions (as many dimensions are there are items), whose 

coordinates are preference values. This similarity metric computes the Euclidean distance5

Table 4.3 This table shows the Euclidean “distance” between user 1 and other users, and resulting 
similarity scores. 

 d between 

two such user “points”. This value alone does not constitute a valid similarity metric, because larger 

values would mean more distant, and therefore less similar, users. We need the value to be smaller 

when users are more similar. Therefore, the implementation actually returns 1 / (1+d). You can verify 

that when the distance is 0 (users have identical preferences) the result is 1, decreasing to 0 as d 

increases. This similarity metric never returns a negative value, but larger values still mean more 

similarity. 

 Item 101 Item 102 Item 103 Distance Similarity to User 1 

User 1 5.0 3.0 2.5 0.000 1.000 

User 2 2.0 2.5 5.0 3.937 0.203 

User 3 2.5 - - 2.500 0.286 

User 4 5.0 - 3.0 0.500 0.667 

User 5 4.0 3.0 2.0 1.118 0.472 

 

                                                   
 
5 Recall this is the square root of the sum of squares of the differences in coordinates 
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After changing our last example to use EuclideanDistanceSimilarity, the result is 0.75 – it 

happens to be a little better in this case, but barely. Note that we were able compute some notion of 

similarity for all pairs of users here, whereas the Pearson correlation couldn’t produce an answer for 

users 1 and 3. This is good, on the one hand, though the result is based on one item in common, which 

could be construed as undesirable. We note that this implementation also has the same possibly 

counterintuitive behavior: users 1 and 4 have a higher similarity than users 1 and 5. 

4.4.5 Adapting the cosine measure similarity 
The cosine measure similarity is another similarity metric that depends on envisioning user preferences 

as like points in space. Hold in mind the example above, of user preferences as points in an n-

dimensional space. Imagine two lines from the origin, or point (0,0,…,0), to each of these two points. 

When the two users are similar, they will have similar ratings, and so will be relatively close in space -- 

at least, they’ll be in roughly the same direction from the origin. The angle formed between these two 

lines will be relatively small. In contract, when the two users are dissimilar, their points will be distant, 

and likely in different directions from the origin, forming a wide angle. 

This angle can be used as the basis for a similarity metric, in the same way we used a distance to 

form a similarity metric above. In this case, we take the cosine of the angle as the similarity value. If 

you’re rusty on trigonometry, all you need to remember to understand this is that the cosine value is 

always between -1 and 1 and that the cosine of a small angle is near 1, and the cosine of a large angle 

near 180 degrees is close to -1. This is good, since we want small angles to map to high similarity, near 

1, and large angles to map to near -1.  

 You may be searching for something like “CosineMeasureSimilarity” in Mahout. You’ve 

actually already found it but under an unexpected name: PearsonCorrelationSimilarity. The 

cosine measure similarity and Pearson correlation aren’t the same thing, but, if you bother to work out 

the math, they actually reduce to the same computation when the two series of input values each have 

a mean of 0 (“centered”). 

The cosine measure similarity is commonly referenced in research on collaborative filtering. You can 

employ this similarity metric too by simply using PearsonCorrelationSimilarity. 

4.4.6 Defining similarity by relative rank with the Spearman correlation 
The Spearman correlation is an interesting variant on the Pearson correlation, for our purposes. Rather 

than compute a correlation based on the original preference values, it computes a correlation based on 

the relative rank of preference values. Imagine that, for each user, we find his or her least preferred 

item and overwrite its preference value with a “1”. Then we change the next-least-preferred item’s 

preference value to “2”, and so on. To illustrate this, imagine if you were rating movies and gave your 

least-preferred movie 1 star, the next-least favorite 2 stars, and so on. Then, we compute a Pearson 

correlation on the transformed values. This is the Spearman correlation. 

This process loses some information. While it preserves the essence of the preference values -- their 

ordering -- it removes information about exactly how much more each item was liked than the last. This 

may or may not be a good idea; it is somewhere between keeping preference values and forgetting 

them entirely, two options we’ve already looked at. 

Table 4.4 below shows the resulting Spearman correlations. Its simplifications on this already-simple 

data set result in some extreme values: in fact, all correlations are 1 or -1 here, depending on whether 
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a user’s preference values run with or counter to user 1’s preferences here. As with the Pearson 

correlation, no value can be computed between users 1 and 3. 

Table 4.4 This table shows the preference values transformed into rank, and the resulting Spearman 
correlation between user 1 and each of the other users. 

 Item 101 Item 102 Item 103 Correlation to User 1 

User 1 3.0 2.0 1.0 1.0 

User 2 1.0 2.0 3.0 -1.0 

User 3 1.0 - - - 

User 4 2.0 - 1.0 1.0 

User 5 3.0 2.0 1.0 1.0 

 

SpearmanCorrelationSimilarity implements this idea. You could try using this as the 

UserSimilarity in the evaluator code we’ve been using so far. Run it, and take a long coffee break. 

Turn in for the night. It won’t finish anytime soon. This implementation is far slower because it must do 

some non-trivial work to compute and store these ranks, and is orders of magnitude slower. The 

Spearman correlation-based similarity metric is expensive to compute, and is therefore possibly of 

academic interest more than practical use. For some small data sets, it may be desirable. 

It’s a fine time to introduce one of many caching wrapper implementations available in Mahout. 

CachingUserSimilarity is a UserSimilarity implementation that wraps another 

UserSimilarity implementation and caches its results. That is, it delegates computation to another, 

given implementation, and remembers those results internally. Later when asked for a user-user 

similarity value that was previously computed, it can answer immediately rather than delegate to the 

given implementation again to compute. In this way, one can add on caching to any similarity 

implementation. When the cost of performing a computation is relatively high, as here, it can be 

worthwhile to employ. The cost, of course, is memory consumed by the cache. So, instead, try using: 

 

Listing 4.5 Employing caching with a UserSimilarity implementation 

UserSimilarity similarity = new CachingUserSimilarity( 
    new SpearmanCorrelationSimilarity(model), model); 

 

It’s also advisable to decrease the amount of test data from 5% to 1% by increasing the 

trainingPercentage argument to evaluate() from 0.95 to 0.99. It would also be wise to decrease 

the evaluation percentage from 5% to 1% by changing the last parameter from 0.05 to 0.01. This will 

allow the evaluation to finish in more like tens of minutes. The result should be near 0.80. Again, broad 

conclusions are difficult to draw: on this particular data set, it was not quite as effective as other 

similarity metrics. 
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4.4.7 Ignoring preference values in similarity with the Tanimoto coefficient 
Interestingly, there are also UserSimilarity implementations that ignore preference values 

entirely. They don't care whether a user expresses a high or low preference for an item – only that the 

user expresses a preference at all. How can this be a good idea? If preference values are good data, 

then ignoring them seems like a bad idea that hurts performance. But we saw that it didn't necessarily 

hurt at all. This should serve as an additional warning that more data is not necessarily better. 

 TanimotoCoefficientSimilarity is one such implementation, based on (surprise) the 

Tanimoto coefficient. This value is also known as the Jaccard coefficient. It is the number of items that 

both of two users express some preference for, divided by the number of items that either user 

expresses some preference for, as illustrated in figure 4.4. 

 

 

Figure 4.3 The Tanimoto coefficient is the ratio of the size of the intersection, or overlap in two users’ preferred items 
(dark area), to the union of the users’ preferred items (dark and light areas together). 

In other words, it is the ratio of the size of the intersection to the size of the union of their preferred 

items. It has the required properties: when two users’ items completely overlap, the result is 1.0. When 

they have nothing in common, it’s 0.0. The value is never negative, but that’s OK. If we wished, we 

could expand the results into the range -1 to 1 with some simple math: similarity = 2 • similarity - 1. It 

won’t matter to the framework. 

 

Table 4.5 This table shows the similarity values between user 1 and other users, computed using the 
Tanimoto coefficient. Note that preference values themselves are omitted, as they are not used in the 
computation. 

 Item 
101 

Item 
102 

Item 
103 

Item 
104 

Item 
105 

Item 
106 

Item 
107 

Similarity to 
User 1 

User 
1 

X X X     1.0 

User 
2 

X X X X    0.75 

User X   X X  X 0.17 
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3 

User 
4 

X  X X  X  0.4 

User 
5 

X X X X X X  0.5 

 

Note that this similarity metric does not depend only on the items that both have some preference 

for, but that either has some preference for. Hence, all seven items appear in our calculation, unlike 

before. 

You’re likely to use this similarity metric if, and only if, your underlying data contains only “boolean” 

preferences, and you have no preference values to begin with. If you do have preference values, 

presumably it is because you believe they are more signal than noise. You would usually do better with 

a metric that uses this information. In our GroupLens data set, using this metric gives a slightly worse 

score of 0.82. 

4.4.8 Computing smarter similarity with a log-likelihood test 
Log-likelihood-based similarity is similar to the Tanimoto coefficient-based similarity, though more 

difficult to understand intuitively. It is also a metric that does not take account of individual preference 

values. The math involved in computing this similarity metric is beyond the scope of this book to 

explain. It is also based on the number of items in common between two users, but, its value is more an 

expression of how unlikely it is for two users to have so much overlap, given the total number of items 

out there and the number of items each user has a preference for. 

To illustrate, consider two movie fans who have each seen and rated several moves, but, have only 

both seen “Star Wars” and “Casablanca”. Are they similar? If they have each seen hundreds of movies, 

it wouldn’t mean much. Many people have seen these movies, and, if these two have seen many movies 

but only managed to overlap in these two, they’re probably not similar. On the other hand, if each user 

has seen just a few movies, and these two were on both users’ lists, then it would seem to imply they’re 

similar people, when it comes to movies; the overlap would be significant. 

The Tanimoto coefficient already encapsulates some of this thinking, since it looks at the ratio of the 

size of the intersection of their interests to the union. The log-likelihood is computing something slightly 

different. It is trying to assess how unlikely it is that the overlap between the two users is just due to 

chance. That is to say, two dissimilar users will no doubt happen to rate a couple movies in common; 

two similar users will show an overlap that looks quite unlikely to be mere chance. With some statistical 

tests, this similarity metric attempts to find just how strongly unlikely it is that two users have no 

resemblance in their tastes; the more unlikely, the more similar we figure the two are. This requires 

looking at a little more than mere intersection and union of their preferred items. 

Table 4.6 This table shows the similarity values between user 1 and other users, computed using the log-
likelihood similarity metric. 

 Item 
101 

Item 
102 

Item 
103 

Item 
104 

Item 
105 

Item 
106 

Item 
107 

Similarity to 
User 1 
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User 
1 

X X X     0.90 

User 
2 

X X X X    0.84 

User 
3 

X   X X  X 0.55 

User 
4 

X  X X  X  0.16 

User 
5 

X X X X X X  0.55 

 

Using a log-likelihood-based similarity metric is as easy as inserting new 
LogLikelihoodSimilarity in listing 4.3, as before. 

While it’s hard to generalize, log-likelihood-based similarity will probably outperform Tanimoto 

coefficient-based similarity. It is, in a sense, a more intelligent metric. Re-running the evaluation shows 

that, at least for our data set and recommender, it improves performance over 

TanimotoCoefficientSimilarity, to 0.73. 

4.4.8 Inferring preferences 
We noted above that sometimes too little data is a problem. In a few cases, for example, the Pearson 

correlation was unable to compute any similarity value at all since some pairs of users overlap in only 

one item. The Pearson correlation can’t take account of preference values for items which only one user 

has expressed a preference either. 

What if we “filled in the blanks” with some default value? For example, we could pretend that each 

user has rated every item by inferring preferences for items for which the user hasn’t explicitly 

expressed a preference. This sort of strategy is enabled via the PreferenceInferrer interface, which 

at the moment has one implementation, AveragingPreferenceInferrer. This implementation 

computes the average preference value for each user and fills in this average as the preference value 

for any item not already associated to the user. It can be enabled on a UserSimilarity 

implementation with a call to setPreferenceInferrer(). 

While this strategy is available, it is in practice not usually helpful. It is provided primarily because it 

is mentioned in early research papers on recommender engines. In theory, making up information 

purely based on existing information isn’t adding anything. It certainly does slow down computations 

drastically. It is available for experimentation, but will likely not be useful when applied to real data 

sets. 

4.5 Item-based recommendation 
We’ve looked at user-based recommenders -- not one recommender, but tools to build a nearly limitless 

number of variations on the basic user-based approach, by plugging in different and differently 

configured components into the implementation. 
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Yet there are other approaches to recommendation, and next we will look at item-based 

recommenders. This section will be shorter, since several of the components we've seen already (data 

models, similarity implementations) still apply to item-based recommenders. 

Item-based recommendation is derived from how similar items are to items, instead of users to 

users. To illustrate, return to the pair we left in the music store, doing their best to pick an album that a 

teenage boy would like. Imagine yet another line of reasoning they could have adopted: 

ADULT: I am looking for a CD for a teenage boy. 

EMPLOYEE: OK, what does he like? 

ADULT: Oh, you know, he likes what all the young kids like these days.  

EMPLOYEE: What kind of music or bands? 

ADULT: He wears a Bowling In Hades t-shirt all the time and seems to have all of their 

albums. Anything else you’d recommend? 

EMPLOYEE: Well, about everyone I know that likes Bowling In Hades seems to like the 

new Rock Mobster album. 

 

This sounds reasonable. Is this different from previous examples? Yes. The record store employee is 

recommending an item that is similar to something we already know the boy likes. This is not the same 

as before, where the question was, “who is similar to the boy, and what do they like?” Here the question 

is, “what is similar to what the boy likes?” 

 

Figure 4.4 A basic illustration of the difference between user-based and item-based recommendation: user-based 
recommendation (large dashes) finds similar users, and sees what they like. Item-based recommendation (short 
dashes) sees what the user likes, then finds similar items. 

4.5.1 The algorithm 
The algorithm will feel familiar, having seen user-based recommenders already: 
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for every item i that u has no preference for yet 
  for every item j that u has a preference for 
    compute a similarity s between i and j 
    add u's preference for j, weighted by s, to a running average  
return the top items, ranked by weighted average 

 

The third line shows how it is based on item-item similarities, not user-user similarities as before. 

The algorithms are similar, but not entirely symmetric. They do have notably different properties. For 

instance, the running time of an item-based recommender scales up as the number of items increases, 

whereas a user-based recommender’s running time goes up as the number of users increases. 

This suggests one reason that you might choose an item-based recommender: if the number of 

users is relatively low compared to the number of items, the performance advantage could be 

significant. 

Also, items are typically less subject to change than users. When items are things like DVDs, we 

expect that over time, as we acquire more data, that our estimates of the similarities between items 

converge. We have no reason to expect them to change radically or frequently. Some of the same may 

be said of users, but, users can change over time and new knowledge of users is likely to come in bursts 

of new information that must be digested quickly. To connect this to the last example, it’s likely that 

Bowling in Hades albums and Rock Mobster albums will remain as similar to each other next year as 

today. However, it’s a lot less likely that the same fans mentioned above will have the same tastes next 

year, and so, their similarities will change more.  

We observe this in order to argue that if item-item similarities are more fixed, then they are better 

candidates for precomputation. Precomputing similarities takes work, but of course speeds up 

recommendations at run time. This could be desirable in contexts where delivering recommendations 

quickly at run time is essential -- think about a news site which must potentially deliver 

recommendations immediately with each news article view. 

4.5.2 Exploring the item-based recommender 
Let’s insert a simple item-based recommender into our familiar evaluation framework, using the 

following code. Here we’re deploying GenericItemBasedRecommender rather than 

GenericUserBasedRecommender, and it requires a different and simpler set of dependencies. 

Listing 4.6 The core of a basic item-based recommender 
@Override 
public Recommender buildRecommender(DataModel model)  
    throws TasteException { 
  ItemSimilarity similarity = new PearsonCorrelationSimilarity(model); 
  return new GenericItemBasedRecommender(model, similarity); 
} 

 

PearsonCorrelationSimilarity still works here, because it also implements the 

ItemSimilarity interface, which is entirely analogous to the UserSimilarity interface that we’ve 

already seen. It implements the same notion of similarity, based on the Pearson correlation, but 

between items instead of users. That is, it compares series of preferences expressed by many users, for 

one item, rather than by one user for many items.  
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GenericItemBasedRecommender is simpler. It only needs a DataModel and ItemSimilarity -

- no “ItemNeighborhood”. You might wonder at the apparent asymmetry. Recall that the item-based 

recommendation process already begins with a limited number of starting points: the items that the 

user in question already expresses a preference for. This is analogous to the neighborhood of similar 

users that the user-based approach first identifies. It doesn’t make sense in the second half of the 

algorithm to compute neighborhoods around each of the user’s preferred items. 

You are invited to experiment with different similarity metrics, as above. Not all of the 

implementations of UserSimilarity that we have seen so far also implement ItemSimilarity. By 

now, you’ll already know how to evaluate the accuracy of this item-based recommender when using 

various similarity metrics on our now-familiar GroupLens data set. Results are reproduced below for 

convenience. 

Table 4.7 Evaluation result under various ItemSimilarity metrics 

Implementation Similarity 

PearsonCorrelationSimilarity 0.75 

PearsonCorrelationSimilarity + weighting 0.75 

EuclideanDistanceSimilarity 0.76 

EuclideanDistanceSimilarity + weighting 0.78 

TanimotoCoefficientSimilarity 0.77 

LogLikelihoodSimilarity 0.77 
 

One thing you may notice is this recommender setup runs significantly faster. This is not surprising, 

given that the data set has about 70,000 users and 10,000 items. We noted that item-based 

recommenders would generally be faster when there are fewer items than users. You may, as a result, 

wish to increase the percentage of data used in the evaluation to 20% or so (pass 0.2 as the final 

argument to evaluate()). This should result in a more reliable evaluation. Note there is little apparent 

difference among these implementations on this data set. 

4.6 Slope-one recommender 
Did you like the movie “Carlito's Way”? Most people who liked this movie, it seems, also liked 

another film starring Al Pacino – like “Scarface”. But people tend to like Scarface a bit more. We'd 

imagine most people that think of Carlito's Way as a four-star movie would give Scarface five stars. So 

if you told me you thought Carlito's Way was a three-star movie, I might guess you'd give Scarface four 

stars – one more than the other film. 

If you agree with this sort of reasoning, you will like the slope-one recommender 

(http://en.wikipedia.org/wiki/Slope_One). It estimates preferences for new items based on average 

difference in preference value (“diffs”) between a new item and the other items the user prefers. 

For example, let's say that we know that, on average, people rate Scarface higher by 1.0 than 

Carlito's Way. Let's also say we find everyone rates Scarface the same as The Godfather, on average.  

Licensed to nancy chen <amigo4u2009@gmail.com>

http://en.wikipedia.org/wiki/Slope_One�


56 
 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 

                   http://www.manning-sandbox.com/forum.jspa?forumID=623 
 

And now, we are presented with a user who rates Carlito's Way 2.0, and The Godfather 4.0. What do we 

estimate his preference for Scarface would be? 

Based on Carlito's Way, we'd guess 2.0 + 1.0 = 3.0. Based on The Godfather, we'd guess 4.0 + 0.0 

= 4.0. Taking a simple average of the two, we'd guess 3.5. This is the essence of the slope-one 

recommender approach. 

4.6.1 The algorithm 
Its name comes from the fact that the recommender algorithm starts with the assumption that there is 

some linear relationship between the preference values for one item and another, that we can in general 

estimate the preferences for some item Y based on the preferences for item X, via some linear function 

like Y = mX + b. Then, the slope-one recommender makes the additional simplifying assumption that 

m=1: “slope one”. We're left attempting to find b = Y-X, the (average) difference in preference value, 

for every pair of items. 

So, the algorithm consists of a significant preprocessing phase, in which all item-item preference 

value differences are computed: 

 
for every item i 
  for every other item j 
    for every user u expressing preference for both i and j 
      add the difference in u’s preference for i and j to an average 

 

And then, the recommendation algorithm becomes: 
 
for every item i the user u expresses no preference for 
  for every item j that user u expresses a preference for 
    find the average preference difference between j and i 
    add this diff to u’s preference value for j 
    add this to a running average 
return the top items, ranked by these averages 
 

The average diffs over the small sample recommender input we have been using throughout the 

book are showing in table 4.8. 

Table 4.8 Average difference in preference value between all pairs of items. Cells along the diagonal are 
0.0. Cells in the bottom left are simply the negative of their counterparts across the diagonal. Hence these 
are not represented explicitly. Some diffs don’t exist, such as 102-107, since no user expressed a 
preference for both 102 and 107. 

 Item 101 Item 102 Item 103 Item 104 Item 105 Item 106 Item 107 

Item 101  -0.833 0.875 0.25 0.75 -0.5 2.5 

Item 102   0.333 0.25 0.5 1.0 - 

Item 103    0.167 1.5 1.5 - 

Item 104     0.0 -0.25 1.0 

Item 105      0.5 0.5 
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Item 106       - 

Item 107        

 

Slope-one is attractive because the on-line portion of the algorithm is fast. Like an item-based 

recommender, its performance does not depend upon the number of users in the data model. It 

depends only upon the average preference difference between every pair of items, which can be pre-

computed. Further, its underlying data structure can be efficiently updated: when a preference changes, 

it’s simple to update relevant diff values. In contexts where preferences may change quickly, this is an 

asset. 

Note that the memory requirements necessary to store all of these item-item differences in 

preference value grow as the square of the number of items. Twice as many items means four times the 

memory! 

4.6.2 Slope-one in practice 
We can easily try the slope-one recommender by simply employing the code below. Note that the slope-

one recommender takes no similarity metric as a necessary argument: new 
SlopeOneRecommender(model). 

After running a standard evaluation using, again, the GroupLens 10M ratings data set, you’ll get a 

result near 0.65. That’s the best yet. Indeed, the simple slope-one approach works well in many cases. 

This algorithm does not make use of a similarity metric, unlike the other approaches we have looked at. 

It has relatively few “knobs” to twiddle. 

Like the Pearson correlation, the simplest form of the slope-one algorithm has a vulnerability: item-

item diffs are given equal weighting regardless of how “reliable” they are, how much data they are 

based upon. Let’s say only one user in the history of movie watching has rated both Carlito’s Way and 

The Notebook. It’s possible; they’re quite different films. We could compute a diff for these two films. 

Would it be as useful as the diff we compute between Carlito’s Way and The Godfather, averaged over 

thousands of users? It sounds unlikely. The latter diff is probably more reliable since it is an average 

over a higher count of users. 

Again, we can employ some form of weighting to improve recommendations by taking some account 

of this. SlopeOneRecommender offers two types of weighting: weighting based on count, and on 

standard deviation. Recall that slope-one estimates preference values by adding diffs to all of the user’s 

current preference values, and then averaging all of those results together to form an estimate. Count 

weighting will weight more heavily those elements based on diffs that are based on more data, more 

users who have expressed a preference for both items in question. In particular, the average becomes a 

weighted average, where the diff “count” is the weight -- the number of users on which the diff is 

based. 

Similarly, standard deviation weighting will weight according to the standard deviation of difference 

in preference value. Lower standard deviation means higher weighting. If the difference in preference 

value between two films is very consistent across many users, it seems more reliable and should be 

given more weight. If it varies considerably from user to user, then it should be deemphasized. 

These variants turn out to be enough of a good idea that they are enabled by default. You already 

used this strategy when you ran the evaluation above. We could disable them to see the effect: 
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Listing 4.7 Selecting no weighting with a SlopeOneRecommender 
DiffStorage diffStorage = new MemoryDiffStorage( 
    model, Weighting.UNWEIGHTED, false, Long.MAX_VALUE)); 
return new SlopeOneRecommender( 
 model, 
 Weighting.UNWEIGHTED, 
 Weighting.UNWEIGHTED,  
 diffStorage); 

 

The result is 0.67 -- only slightly worse on this data set.  

4.6.3 DiffStorage and memory considerations 
Slope-one does have its price, as we noted: memory consumption. In fact, if you tweak the evaluation 

to use even 10% of all data (about 100,000 ratings), even a 1 gigabyte heap won’t be enough. The diffs 

are used so frequently, and it’s so relatively expensive to compute them, that they do need to be 

computed and stored ahead of time. But, keeping them all in memory can get expensive. 

Storage of diffs is encapsulated separately in implementations of DiffStorage. We’ve been using, 

by default, MemoryDiffStorage so far. Not surprisingly, this implementation keeps diffs in memory. It 

offers one constructor parameter that can trade off some accuracy for slightly less memory 

consumption: compactAverages. This will cause the implementation to use smaller primitive data 

types to store count, average and standard deviation. 

It’s worth a try if pressed for memory, but, by that point you will want to look to storing the diffs 

externally, such as in a database. Fortunately, implementations like MySQLJDBCDiffStorage exist for 

this purpose. It must be used in conjunction with a JDBC-backed DataModel implementation like 

MySQLJDBCDataModel, as seen in listing 4.8: 

Listing 4.8 Creating a JDBC-backed DiffStorage 
AbstractJDBCDataModel model = new MySQLJDBCDataModel(); 
DiffStorage diffStorage = new MySQLJDBCDiffStorage(model); 
Recommender recommender = new SlopeOneRecommender( 
    model, Weighting.WEIGHTED, Weighting.WEIGHTED, diffStorage); 
 

As with MySQLJDBCDataModel, the table name and column names used by 

MySQLJDBCDiffStorage can be customized via constructor parameters. 

4.6.4 Distributing the precomputation 
Precomputing the item-item diffs is significant work. While it is more likely that the size of your data will 

cause problems with memory requirements before the time required to compute these diffs becomes 

problematic, you might be wondering if there are ways to distribute this computation to complete faster. 

Diffs can be updated easily at runtime in response to new information, so, a relatively infrequent offline 

precomputation process is feasible in this model. 

Distributing the diff computation via Hadoop is supported. We will wait until a later chapter, where 

we introduce all of the Hadoop-related recommender support in Mahout, to explore this process. 
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4.7 New and experimental recommenders 
Mahout also contains implementations of other approaches to recommendation. The three 

implementations presented briefly below are newer: the implementation may still be evolving, or, the 

technique may be more recent and experimental. All are worthy ideas, which may yet be useful for use 

or modification. We won’t spend much time here, since they are less central to Mahout’s current 

recommender offerings, but still deserve mention. 

4.7.1 Singular value decomposition-based recommenders 
Among the most intriguing of these implementations is SVDRecommender, based on the singular value 

decomposition, or SVD. This is an important technique in linear algebra that pops up in machine-

learning techniques. Fully understanding it requires some advanced matrix math and understanding of 

matrix factorization, but this is not necessary to appreciate the SVD’s application to recommenders. It is 

beyond the scope of this book, since there are nearly entire books on the linear algebra behind the SVD, 

and the SVD algorithm itself. 

To attempt to explain the intuition beyond what the SVD does for recommenders, let’s say you ask a 

friend what sort of music she likes, and she lists the following artists: 

 Brahms 

 Chopin 

 Miles Davis 

 Tchaikovsky 

 Louis Armstrong 

 Schumann 

 John Coltrane 

 Charlie Parker 

She might as well have summarized that she likes “classical” and “jazz” music. That communicates 

less precise information, but not a great deal less. From either statement, you could (probably correctly) 

infer that she would appreciate Beethoven more than the classic rock band Deep Purple. 

Of course, recommender engines operate in a world of many specific data points, not generalities. 

The input is user preferences for a lot of particular items -- more like the list above rather than our 

summary. It would be nice to operate on a smaller set of data, all else equal, for reasons of 

performance. If, for example, iTunes could base its Genius recommendations based not on billions of 

individual song ratings, but instead millions of ratings of genres, obviously it would be faster -- and, as 

a basis for recommending music, might not be much worse. 

 Here, the SVD is the magic that can do the equivalent of the summarization above. It boils down 

the world of user preferences for individual items to a world of user preferences for more general and 

less numerous “features” (like genre, above). This is, potentially, a much smaller set of data. 

While this process loses some information, it can sometimes improve recommendation results. The 

process “smooths” the input in useful ways. For example, imagine two car enthusiasts. One loves 

Corvettes, and the other loves Camaros. We’d like to recommend cars to them. These enthusiasts have 

similar tastes: both love a Chevrolet sports car. However, in a typical data model for this problem, these 
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two cars would be different items. Without any overlap in their preferences, these two users would be 

deemed unrelated. However, an SVD-based recommender would perhaps find the similarity. The SVD 

output may contain features that correspond to concepts like “Chevrolet” or “sports car”, to which both 

users would be associated. And from the overlap in features, a similarity could be computed. 

Using the SVDRecommender is as simple as: new SVDRecommender(model, 10, 10). The first 

numeric argument is the number of features that the SVD should target. There’s no right answer for 

this; it would be equivalent to the number of genres we might condense someone’s musical taste into, 

in the previous example. The second argument is the number of “training steps” to run. Think of this as 

controlling the amount of time it should spend producing this summary; larger values mean longer 

training. 

This approach can give good results (0.66 on our GroupLens data set). At the moment, the major 

issue with the implementation is that it computes the SVD in memory. This requires the entire data set 

to fit in memory, and it’s precisely when this isn’t the case that this technique is appealing, since it can 

“shrink” the input without compromising output quality significantly. In the future, this algorithm will be 

reimplemented in terms of Hadoop, wherein the necessarily massive SVD computation can be 

distributed across multiple machines. It is not yet available at this stage of Mahout’s evolution. 

4.7.2 Linear interpolation item-based recommendation 
This is a somewhat different take on item-based recommendation, implemented as 

KnnItemBasedRecommender. “Knn” is short for “k nearest neighbors”, which is an idea we already 

saw in the context of NearestNUserNeighborhood. This was a UserNeighborhood implementation 

that selected a fixed number of most similar users as a neighborhood of similar users. The algorithm 

does use the concept of a user neighborhood, but in a different way. 

 This recommender algorithm still estimates preference values by means of a weighted average of 

the items the user already has a preference for, but, the weights are not the results of some similarity 

metric. Instead, the algorithm calculates the optimal set of weights to use between all pairs of items, by 

means of some linear algebra -- here’s where the linear interpolation comes in. Yes, it is possible to just 

optimize the weights with some mathematical wizardry. 

In reality, it would be very expensive to compute this across all pairs of items, so instead, it first 

calculates a neighborhood of items most similar to the target item, the one for which a preference is 

being estimated. It chooses the n nearest neighbors, in much the same way that 

NearestNUserNeighborhood did. One can try this recommender as seen in listing 4.9: 

Listing 4.9 Deploying KnnItemBasedRecommender 
ItemSimilarity similarity = new LogLikelihoodSimilarity(model); 
Optimizer optimizer = new NonNegativeQuadraticOptimizer(); 
return new KnnItemBasedRecommender(model, similarity, optimizer, 10); 

 

This will cause the recommender to use a log-likelihood similarity metric to calculate nearest-10 

neighborhoods of items. And, it will use a quadratic programming-based strategy to calculate the linear. 

The details of this are outside the scope of the book. 

The implementation is quite functional, but in its current form, is also slow on moderately sized data 

sets. It should be viewed as viable for small data sets, or for study and extension. On the GroupLens 

data set, it yields an evaluation result of 0.87. 
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4.7.3 Cluster-based recommendation 
This approach is best thought of as a variant on user-based recommendation. Here, instead of 

recommending items to users, we recommend items to clusters of similar users. This entails a 

preprocessing phase, in which all users are partitioned into clusters. Recommendations are then 

produced for each cluster, such that the recommended items are most interesting to the largest number 

of users.  

The upside of this approach is that recommendation is fast at runtime -- since most everything is 

precomputed. One could argue that the recommendations are less personal this way, since 

recommendations are computed for a group rather than an individual. It may be more effective at 

producing recommendations for new users, with little preference data available. As long as the user can 

be attached to a reasonably relevant cluster, the recommendations ought to be as good as they will be 

when more is known about the user. 

The name comes from the fact that the algorithm repeatedly joins most-similar clusters into larger 

clusters, and this implicitly organizes users into a sort of hierarchy, or tree. 

Figure 4.5 An illustration of clustering. Users 1 and 5 are clustered together first, as are 2 and 3, as they are closest. 4 
is then clustered with the 1-5 cluster to create a larger cluster, one step up in the “tree”. 

Unfortunately, the clustering takes a long time, which you will see if you attempt to run the code in 

the following listing, which employs a TreeClusteringRecommender to implement this idea. 

Listing 4.10 Creating a cluster-based recommender 
UserSimilarity similarity = new LogLikelihoodSimilarity(model); 
ClusterSimilarity clusterSimilarity =  
    new FarthestNeighborClusterSimilarity(similarity); 
return new TreeClusteringRecommender(model, clusterSimilarity, 10); 
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Similarity between users is, as usual, defined by a UserSimilarity implementation. Similarity 

between two clusters of users is defined by a ClusterSimilarity implementation. Currently, two 

implementations are available: one which defines cluster similarity as the similarity between the two 

most similar user pair, one chosen from each cluster, and another which defines it as the similarity 

between the two least similar users. 

Both are reasonable; in both cases the risk is that one outlier on the edge of a cluster distorts the 

notion of cluster similarity. Two clusters whose members are on average “distant” but happen to be 

close at one edge would be considered quite close by the most-similar-user rule, which is implemented 

by NearestNeighborClusterSimilarity. The least-similar-user rule, implemented above as the 

FarthestNeighborClusterSimilarity above, likewise may consider two fairly close clusters to be 

distant from one another, if each contains an outlier far away from the opposite cluster. 

A third approach, to define cluster similarity as the “distance” between the center, or mean, of each 

cluster, is also possible, though not yet implemented in this part of Mahout. 

4.8 Comparing to content-based recommenders 
As mentioned in an earlier chapter, “content-based” recommendation is a broad and often-mentioned 

approach to recommendation, which takes into account the content or attributes of items. For this 

reason, it is similar to yet distinct from collaborative filtering approaches, which are based on user 

associations to items only, and treat items as black boxes without attributes. While Mahout largely does 

not implement content-based approaches, it does offer some opportunities to make use of item 

attributes in recommendation computations. 

4.8.1 Finding content-based recommending in collaborative filtering 
For example, consider an online bookseller, who stocks multiple editions of some books. This seller 

might recommend books to its customers. Its items are books, of course, and it might naturally define a 

book according to its ISBN number (unique product identifier). However, for a popular public-domain 

book like Jane Eyre, there may be many printings by different publishers of the same text, under 

different ISBN numbers. It seems more natural to recommend books based on its text, rather than its 

particular edition -- do you care more about reading “Jane Eyre” or “Jane Eyre as printed by ACME 

Publications in 1993 in paperback”? Rather than treat various publications of Jane Eyre as distinct items, 

it might be more useful to think of the book itself, the text, as the item, and recommend all editions of 

this book equally. This would be, in a sense, content-based recommendation. By treating the underlying 

text of a book product, which is its dominant attribute, as the “item” in a collaborative filtering sense, 

and then applying collaborative filtering techniques with Mahout, they would be engaging in a form of 

content-based recommendations. 

Or, recall that item-based recommenders require some notion of similarity between two given items. 

This similarity is encapsulated by an ItemSimilarity implementation. So far we’ve seen 

implementations that derive similarity from user preferences only -- this is classic collaborative filtering. 

However, there’s no reason the implementation could not be based on item attributes. For example, a 

movie recommender might define an item (movie) similarity as a function of movie attributes like genre, 

director, actors and actresses, and year of release. Using such an implementation within a traditional 

item-based recommender would also be an example of content-based recommendation. 
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4.8.2 Looking deeper into content-based recommendation 
Taking this a step further, imagine content-based recommendation as a generalization of 

collaborative filtering. In collaborative filtering, computations are based on preferences, which are user-

item associations. But what drives these user-item associations? It’s likely that users have implicit 

preferences for certain item attributes, which come out in their preferences for certain items and not 

others. For example, if your friend told you she likes the albums Led Zeppelin I, Led Zeppelin II and Led 

Zeppelin III, you might well guess she is actually expressing a preference for an attribute of these 

items: the band Led Zeppelin. By discovering these associations, and discovering attributes of items, it’s 

possible to construct recommender engines based on these more nuanced understandings of user-item 

associations. 

These techniques come to resemble search and document retrieval techniques: asking what items a 

user might like based on user-attribute associations and item attributes resembles retrieving search 

results based on query terms and occurrence of terms in documents. While Mahout’s recommender 

support does not yet embrace these techniques, it is a natural direction for future versions to address. 

4.9 Comparing to model-based recommenders 
Another future direction for Mahout is model-based recommendation. This family of techniques attempts 

to build some model of user preferences, based on existing preferences, and then infer new preferences. 

These techniques generally fall into the broader category of collaborative filtering, as they typically 

derive from user preferences only. 

 The “model” might be a probabilistic picture of users’ preferences, in the form of a Bayesian 

network for example. The algorithm then attempts to judge the probability of liking an item given its 

knowledge of all user preferences, and ranks recommendations accordingly. 

Association rule learning can be applied in a similar sense to recommendations. By learning “rules” 

such as “when a user prefers item X and item Y, he or she will prefer item Z” from the data, and judging 

confidence in the reliability of such rules, a recommender can put together the most likely set of new, 

preferred items.  

Cluster-based recommenders might be considered a type of model-based recommender. The clusters 

represent a model of how users group together and therefore how their preferences might run the same 

way. In this limited sense, Mahout supports model-based recommenders. However, this is an area that 

is still largely under construction in Mahout as of this writing. 

4.10 Summary 
In this chapter, we thoroughly explored the core recommender algorithms offered by Mahout. We 

started by explaining the general user-based recommender algorithm in terms of real-world reasoning. 

From there, we looked at how this algorithm is realized in Mahout, as 

GenericUserBasedRecommender. Many pieces of this generic approach can be customized, such as 

the definition of user similarity and user neighborhood. 

We looked at the “classic” user similarity metric, based on the Pearson correlation, noted some 

possible issues with this approach, and responses such as weighting. We looked at similarity metrics 

based on the Euclidean distance, Spearman correlation, Tanimoto coefficient and a log-likelihood ratio. 
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Then, we looked at the other canonical recommendation technique, item-based recommendation, as 

implemented by GenericItemBasedRecommender. It is conceptually quite similar and reuses some 

concepts already covered in the context of user-based recommender, such as the Pearson correlation. 

Next, we examined a slope-one recommender, a unique and relatively simple approach to 

recommendation based on average differences in preference values between items. It requires 

significant precomputation and storage for these diffs, and so we explored how to store these both in 

memory and in a database. 

Last, we looked briefly at a few newer, more experimental implementations currently in the 

framework. These include implementations based on the singular value decomposition, linear 

interpolation, and clustering. These may be useful for small data sets, or academic interest, as they are 

still a work in progress. 

The key parameters and features for each implementation are summarized in table 4.9 below. 

Table 4.9 Summary of available recommender implementations, their key input parameters, and key 
features to consider when choosing an implementation. 

Implementation Key Parameters Key Features 

GenericUserBasedRecommender User similarity metric 

Neighborhood definition and size 

“Conventional” implementation 

Fast when number of users is 
relatively smaller 

GenericItemBasedRecommender Item similarity metric Fast when number of items is 
relatively smaller 

Useful when an external notion 
of item similarity is available 

SlopeOneRecommender Diff storage strategy Recommendations and updates 
fast at runtime 

Requires large precomputation 

Suitable when number of items 
is relatively small 

SVDRecommender Number of features Good results 

Requires large precomputation 

KnnItemBasedRecommender Number of means (“k”) 

Item similarity metric 

Neighborhood size 

Good when number of items is 
relatively smaller 

TreeClusteringRecommender Number of clusters 

Cluster similarity definition 

User similarity metric 

Recommendations are fast at 
runtime 

Requires large precomputation 
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Good when number of users is 
relatively smaller 

 

We are done introducing Mahout’s recommender engine support. Now we’re ready to examine even 

larger and more realistic data sets, from the practitioner’s perspective. You might wonder why we’ve 

made little mention of Hadoop yet. Hadoop is a powerful tool, and necessary when dealing with massive 

data sets, where one must make use of many machines. This has drawbacks: such computations are 

massive, resource-intensive, and complete in hours, not milliseconds. We will reach Hadoop in the last 

chapter in this section. First, in the next chapter, we will explore productionizing a recommender engine 

based on Mahout that fits onto one machine, one that can respond to requests for recommendations in 

a fraction of a second and incorporate updates immediately. 
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5 
Taking Recommenders 

to Production 

This chapter covers 

 Analyzing data from a real dating site 

 Designing and refining a recommender engine solution 

 Deploying a web-based recommender service in production  

So far, we have toured the recommender algorithms and variants that Mahout provides. We’ve seen 

how to evaluate the accuracy and performance of a recommender. Now, we will apply all of this to a real 

data set, taken from a dating site, to create an effective recommender engine from scratch based on 

data. Then we’ll take the recommender the final step, to a deployable production-ready web service. 

There is no one standard approach to building a recommender for given data and a given problem 

domain. The data must at least represent associations between users and items -- where “users” and 

“items” might be many things. Adapting the input to recommender algorithms is usually quite a 

problem-specific process. Discovering the best recommender engine to apply to the input data is 

likewise specific to each context. It inevitably involves hands-on exploration, experimentation, and 

evaluation on real problem data. 

This chapter will present one end-to-end example that suggests the process you might take to 

develop a recommender system for your data set. We will try an approach, collect data, try to 

understand the results, and repeat many times. Many approaches won’t get us anywhere, but that’s 

good information as well. This “brute force” approach is appropriate, since it’s relatively painless to 

evaluate an approach, and because here, as in other problem domains, it’s not at all clear what the right 

approach is from just looking at the data. 

5.1 Dating data from libimseti.cz 
We will use a new data set, derived from the Czech dating site Líbímseti (http://libimseti.cz/). Users of 

this site are able to rate other users’ profiles, on a scale of 1 to 10. A 1 means “NELÍBÍ”, or “dislike”, 
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and a 10 means “LÍBÍ”, or “like”. From the presentation of profiles on the site, we infer that users of 

such a site are expressing some assessment of the profiled user’s appeal, attractiveness, and 

“dateability”. A great deal of this data has been anonymized, made available for research6, and 

published by Vaclav Petricek (http://www.occamslab.com/petricek/data/). Because we will be using the 

data in this chapter, please obtain a copy of the data from this link7

With 17,359,346 ratings in the data set, this is almost twice as big as our previous data set. It 

contains users’ explicit ratings for “items”, where items are here other people’s user profiles. That 

means a recommender system built on this data will be recommending people to people. It’s a reminder 

to think broadly about recommenders, which aren’t limited to recommending objects like books and 

DVDs. 

. 

5.1.1 Analyzing the input data 
The first step is analyzing what data is available to work with, and beginning to form ideas about which 

recommender algorithm could be suitable to use with it. The ratings.dat file in the archive you 

downloaded is a simple comma-delimited file containing user ID, profile ID, and rating. Each line 

represents one user’s rating of one other user’s profile. The data is purposely obfuscated, so we can’t 

assume that the user IDs are real user IDs from the site. Profiles are user profiles, and so this data 

represents users’ ratings of other users. One might suppose that user IDs and profile IDs are 

comparable here, that user ID 1 and profile ID 1 are the same user. This does not appear to be the 

case, likely for reasons of anonymity. We can’t make this assumption about the input. 

There are 135,359 unique users in the data, who together rated 168,791 unique user profiles. 

Because the number of users and items are about the same, neither user-based nor item-based 

recommendation is obviously more efficient. If there had been a great deal more profiles than users, 

then an item-based recommender would have been relatively slower. Slope-one can be applied here, 

even though its memory requirements scale up quickly as the number of items. As we will see, its 

memory requirements can be limited. 

We also note that the data set has been pre-processed in a way: no users that produced less than 

20 ratings are included. In addition, users who seem to have rated every profile with the same value are 

also excluded, presumably because it may be spam, or an unserious attempt at rating. The data we do 

have comes from users who bothered to make a number of ratings; presumably, their input is useful, 

and not “noisy”, compared to the ratings of less-engaged users. 

This input is already formatted for use with Mahout’s FileDataModel. The user and profile IDs are 

numeric, and, the file is already comma-delimited with fields in the required order: user ID, item ID, 

preference value. 

5.1.2 Incorporating gender information 
The data set provides another interesting set of data: the gender of the user for many of the profiles in 

the data set. We are not given the gender of all profiles; in gender.dat, several lines end in “U” which 

means “unknown”. We are also not given the gender of the users in the data set -- just the profiles. 

                                                   
 
6 See also http://www.occamslab.com/petricek/papers/dating/brozovsky07recommender.pdf 
7 Neither the site nor publisher of the data endorse or are connected with this book. 
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 However that means we know something more about each of our items. Male profiles are much 

more similar to one another than female profiles -- at least, in the context of being recommended as 

potential dates. If we see that most or all of a user’s ratings are for male profiles, it stands to reason 

that the user will rate male profiles as far more desirable dates than female. We might view this 

information as the basis for an item-item similarity metric. 

This isn’t a perfect assumption. Without becoming too sidetracked on sensitive issues of sexuality, 

we note that some users of the site may enjoy rating profiles of a gender they are not interested in 

dating, for fun. Some users may legitimately have some romantic interest in both genders. In fact, the 

very first two ratings in ratings.dat are from one user, and yet appear to be for profiles of different 

genders. 

It’s important to account for gender in a dating site recommender engine like this; it would be quite 

bad to recommend a female to a user interested only in males -- this would surely be viewed as a bad 

recommendation, and to some, offensive. This restriction is important, but doesn’t fit neatly into the 

standard recommender algorithms. Later in the chapter, we’ll examine how to inject this information as 

both a filter, and a similarity metric. 

5.2 Finding an effective recommender 
To create a complete recommender engine for Líbímseti data, we will need to choose from among the 

many implementations we’ve seen already. Our recommender ought to be both fast and produce good 

recommendations. Of those two, it’s better to focus on producing good recommendations first, and then 

look to performance. After all, what’s the use in producing bad answers quickly? 

 We can’t possibly deduce the right implementation from looking at the data; some empirical testing 

is needed. Armed with an evaluation framework, we set about collecting some data. 

5.2.1 User-based recommenders 
User-based recommenders are a natural first stop. We can use several different similarity metrics and 

neighborhood definitions. To get some sense of what works and doesn’t, we can try many combinations. 

The result of some such experimenting in our test environment is summarized in tables 5.1 and 5.2, and 

figures 5.1 and 5.2. 

Table 5.1 Average absolute difference in estimated and actual preference, when evaluating a user-based 
recommender using one of several similarity metrics, and using a nearest-n user neighborhood 

n = 1 2 4 8 16 32 64 128 

Euclidean 
1.17 1.12 1.23 1.25 1.25 1.33 1.48 1.43 

Pearson 
1.30 1.19 1.27 1.30 1.26 1.35 1.38 1.47 

Log-
likelihood 

1.33 1.38 1.33 1.35 1.33 1.29 1.33 1.49 

Tanimoto 
1.32 1.33 1.43 1.32 1.30 1.39 1.37 1.41 
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Table 5.2 Average absolute difference in estimated and actual preference, when evaluating a user-based 
recommender using one of two similarity metrics, and using a threshold-based user neighborhood 

 
 
 

t = 0.95 0.9 0.85 0.8 0.75 0.7 

Euclidean 
1.33 1.37 1.39 1.43 1.41 1.47 

Pearson 
1.47 1.4 1.42 1.4 1.38 1.37 

Log-
likelihood 

1.37 1.46 1.56 1.52 1.51 1.43 

Tanimoto 
NaN NaN NaN NaN NaN NaN 
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Figure 5.1 Visualization of values in table 5.1. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Visualization of table 5.2. 
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     These scores aren’t bad. These recommenders are estimating user preferences to within 1.12 to 

1.56 points on a scale of 1 to 10, on average. 

There are some trends here, even though some individual evaluation results vary from that trend. It 

looks like the Euclidean distance similarity metric may be a little better than Pearson, though their 

results are quite similar. It also appears that using a small neighborhood is better than a large one; the 

best evaluations occur when using a neighborhood of two people! Maybe users’ preferences are truly 

quite personal, and incorporating too many others in the computation doesn’t help. 

What explains the “NaN” result for the Tanimoto coefficient-based similarity metric? It is listed here 

to highlight a subtle point about this methodology. Although all similarity metrics return a value 

between -1 and 1, and return higher values to indicate greater similarity, it’s not true that any given 

value “means” the same thing for each similarity metric. For example, 0.5 from a Pearson correlation-

based metric indicates moderate similarity. However, 0.5 for the Tanimoto coefficient indicates 

significant similarity between two users: of all items known to either of them, half are known to both. 

Even though thresholds of 0.7 to 0.95 were reasonable values to test for the other metrics, these are 

quite high for a Tanimoto coefficient-based similarity metric. In each case, the bar was set so high that 

no user neighborhood was established in any test case! Here, we might have more usefully tested 

thresholds from, say, 0.4 on down. In fact, with a threshold of 0.3, the best evaluation score 

approaches 1.2. 

Similarly, although we see an apparent best value for n in the nearest-n user neighborhood data, we 

don’t quite see the same in the threshold-based user neighborhood results. For example, the Euclidean-

distance-based similarity metric seems to be producing better results as the threshold increases. 

Perhaps the most valuable users to include in the neighborhood have a Euclidean-based similarity of 

over 0.95. What happens at 0.99? 0.999? The evaluation result goes down to about 1.35; not bad, but 

not apparently the best recommender.  

We leave it as an exercise to the dedicated reader to continue looking for even better configurations. 

For our purposes, we will take the current best solution to be: 

 User-based recommender  

 Euclidean distance similarity metric 

 Nearest-2 neighborhood  

5.2.2 Item-based recommenders 
Item-based recommenders involve fewer choices: we need only choose an item similarity metric. We 

can easily try each similarity metric and see what works best. Again, table 5.3 summarizes the 

outcome. 
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Table 5.3 Average absolute differences in estimated and actual preference, when evaluating an item-
based recommender using several different similarity metrics. 

 Score 

Euclidean 
2.36 

Pearson 
2.32 

Log-likelihood 
2.38 

Tanimoto 
2.40 

 

Scores are notably worse here; the average error, or difference between estimated and actual 

preference value, has roughly doubled to over 2. For this data, the item-based approach isn’t as 

effective, for some reason. We could speculate as to why. Before, we computed similarities between 

users in a user-based approach, based on how users rated other users’ profiles. Now, we’re computing 

similarity between user profiles based on how other users rated that profile. Maybe this isn’t as 

meaningful -- maybe ratings tell us more about the rater than the rated profile. Whatever the 

explanation, it seems clear from these results that item-based recommendation isn’t the best choice 

here. 

5.2.3 Slope-one recommender 
Recall that the slope-one recommender constructs a “diff” for most item-item pairs in the data model. 

With 168,791 items (profiles) here, this means storing potentially 28 billion diffs -- far too much to fit in 

memory. Storing these diffs in a database is possible, but will greatly slow performance. In fact, we 

have another option, which is to ask the framework to limit the number of diffs stored to perhaps ten 

million, as seen in listing 5.1. It will attempt to choose the most useful diffs to keep. “Most useful” here 

means those diffs between a pair of items that turn up most often together in the list of items 

associated to a user. For example, if items A and B appear in the preferences of hundreds of users, the 

average diff in their preference values is likely significant, and useful. If A and B only appear together in 

the preferences of one user, it sounds more like a fluke than a piece of data worth storing. 

Listing 5.1 Limiting memory consumed by MemoryDiffStorage 
DiffStorage diffStorage = new MemoryDiffStorage( 
    model, Weighting.WEIGHTED, true, 10000000L); 
return new SlopeOneRecommender( 
    model, Weighting.WEIGHTED, Weighting.WEIGHTED, diffStorage); 

 

Indeed, from examining the log output, this keeps memory consumption to about 1.5GB. You’ll also 

notice again how fast slope-one is; on the workstation used for testing, we saw average 

recommendation times under 10 milliseconds, compared to 200 milliseconds or so for other algorithms. 
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The evaluation result is about 1.41. This is not a bad result, but not quite as good a result as we 

observed with user-based recommenders above. It is likely not worth pursuing slope-one for this 

particular data set. 

5.2.4 Evaluating precision and recall 
Above, we did experiment with a Tanimoto coefficient-based similarity metric and log-likelihood-based 

metric, and as we know these are metrics which do not use preference values. However, we did not yet 

examine recommenders that completely ignore rating values. Such recommenders can’t be evaluated in 

the same way -- there are no estimated preference values to evaluate against real values, because 

there are no preference values at all. It’s possible to examine precision and recall of such recommenders 

versus the current best solution: user-based recommender, Euclidean distance metric, and nearest-2 

neighborhood. 

We can evaluate the precision and recall of this recommender engine as seen in previous chapters, 

using a RecommenderIRStatsEvaluator. It reveals that precision and recall at 10 are about 3.6% 

and 5%, respectively. This seems low: the recommender rarely recommends the users’ own top-rated 

profiles, when those top-rated profiles are removed. In this context, that’s not obviously a bad thing. 

It’s conceivable that a user might see plenty of “perfect 10s” on such a dating site, and perhaps has 

only ever encountered and rated some of them. It could be that the recommender is suggesting even 

more desirable profiles than the user has seen! Certainly, this is what the recommender is 

communicating, that the users’ top-rated profiles aren’t usually the ones they would like most, were 

they to actually review every profile in existence. 

The other explanation, of course, is that the recommender isn’t functioning well. However we know 

this recommender is fairly good at estimating preference values, usually estimating ratings within about 

1 point on a 10-point scale. So this explanation could be valid. 

An interesting thing happens when we switch to ignore rating data by using 

GenericBooleanPrefDataModel, GenericBooleanPrefUserBasedRecommender, and an 

appropriate similarity metric like LogLikelihoodSimilarity. Precision and recall increase to over 

22% in this case. Similar results are seen with TanimotoCoefficientSimilarity. It seems better 

on the surface; what the result says it that this sort of recommender engine is better at recommending 

back those profiles which the user might already have encountered. If we had reason to believe users 

had in fact reviewed a large proportion of all profiles, then their actual top ratings would be a strong 

indicator of what the “right” answers are. This does not seem to be the case on a dating site with 

hundreds of thousands of profiles. 

In other contexts, a high precision and recall figure may be important. Here, it does not seem to be 

as important. For our purposes here, we will move forward with the previous user-based recommender, 

with Euclidean distance similarity and nearest-2 neighborhood, instead of opting to switch to one of 

these other recommenders. 

5.2.5 Evaluating Performance 
Finally we should look at the runtime performance of this recommender engine that we have identified. 

Because we intend to call it in real-time, it would do little good to produce a recommender that needs 

minutes to compute a recommendation! 
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The LoadEvaluator class can be used, as before, to assess per-recommendation runtime. We ran 

this recommender on the data set with flags “-server -d64 -Xmx2048m -XX:+UseParallelGC -
XX:+UseParallelOldGC” and found an average recommendation time of 218 milliseconds on our test 

machine. The application consumes only about a gigabyte of heap at runtime. Whether or not these 

values are acceptable or not will depend on application requirements and available hardware. These 

figures seem reasonable for many applications. 

5.3 Injecting domain-specific information 
So far we’ve not taken advantage of any domain-specific knowledge here. We have used the user-profile 

rating data as if it could be anything at all -- ratings for books or cars or fruit. Here we look at how we 

could incorporate additional information we have in this domain to improve recommendation. 

5.3.1 Employing a custom item similarity metric 
Because we know the gender of many profiles, we could create a simple similarity metric for pairs of 

profiles based only on gender. Profiles are items, so this would be an ItemSimilarity in the 

framework. For example, we could call two male or two female profiles “very similar” and assign them a 

similarity of 1.0. We could say the similarity between a male and female profile is -1.0. Finally, we could 

assign a 0.0 to profile pairs where the gender of one or both is unknown. 

The idea is simple, perhaps overly simplistic. It would be fast, but would discard all rating-related 

information from the metric computation. For the sake of experimentation, let’s try it out with an item-

based recommender. 

Listing 5.2 A gender-based item similarity metric 
public class GenderItemSimilarity implements ItemSimilarity { 
 
  private final FastIDSet men; 
  private final FastIDSet women; 
 
  public GenderItemSimilarity(FastIDSet men, FastIDSet women) { 
    this.men = men; 
    this.women = women; 
  } 
 
  @Override 
  public double itemSimilarity(long profileID1, long profileID2) { 
    Boolean profile1IsMan = isMan(profileID1); 
    if (profile1IsMan == null) { 
      return 0.0; 
    } 
    Boolean profile2IsMan = isMan(profileID2); 
    if (profile2IsMan == null) { 
      return 0.0; 
    } 
    return profile1IsMan == profile2IsMan ? 1.0 : -1.0; 
  } 
 
  private Boolean isMan(long profileID) { 
    if (men.contains(profileID)) { 
      return Boolean.TRUE; 
    } 
    if (women.contains(profileID)) { 
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      return Boolean.FALSE; 
    } 
    return null; 
  } 
 
  @Override 
  public void refresh(Collection<Refreshable> alreadyRefreshed) { 
    // do nothing 
  } 
 
} 
 

We can pair this ItemSimilarity metric with a standard GenericItemBasedRecommender, as 

before, and evaluate its accuracy. The concept is interesting, but the result here is not better than with 

other metrics: 2.35. If we had more information available, such as the interests and hobbies expressed 

on each profile, we could construct a more meaningful similarity metric that might yield better results. 

This example, however, illustrates the main advantage of item-based recommenders: it provides a 

means to incorporate information about items themselves, which is commonly available in recommender 

problems. From the evaluation results, you also perhaps noticed how this kind of recommender is fast 

when based on such an easy-to-compute similarity metric; on our test machine, recommendations were 

produced in about 15 milliseconds on average. 

5.3.2 Recommending based on content 
If you blinked, you might have missed it -- we just saw an example of content-based recommendation 

in the last section. Above, we added a notion of item similarity that was not based on user preferences, 

but that was based on attributes of the item itself. 

This is a simple but legitimate instance of a content-based recommendation technique. As stated 

above, it’s a powerful addition to pure collaborative filtering approaches, which are based only on user 

preferences. We can usefully inject our knowledge about items (here, people) to augment the user 

preference data we have, and hopefully produce better recommendations. 

Unfortunately the item similarity metric above is specific to the problem domain at hand. This metric 

doesn’t help recommendations in other domains: recommending food, or movies, or travel destinations. 

This is why it’s not part of the framework. But, it is a feasible and powerful approach any time you have 

domain-specific knowledge beyond user preferences about how items are related. 

5.3.3 Modifying recommendations with IDRescorer 
You may have observed an optional, final argument to the Recommender.recommend() method of 

type IDRescorer; instead of calling recommend(long userID, int howMany), you can call 

recommend(long userID, int howMany, IDRescorer rescorer). These objects show up in 

several parts of the Mahout recommender-related APIs. Implementations can transform values used in 

the recommender engine to other values based on some logic, or else exclude an entity from 

consideration in some process. For example, an IDRescorer may be used to arbitrarily modify a 

Recommender’s estimated preference value for an item. It can also remove an item from consideration 

entirely. 

For example, suppose you were recommending books to a user on an e-commerce site. The user in 

question is currently browsing mystery novels. So, when recommending books to that user at that 

moment, you might wish to boost estimated preference values for all mystery novels. You may also 
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wish to ensure that no out-of-stock books are recommended. An IDRescorer can help you do this. 

Below in listing 5.3 is an IDRescorer implementation that encapsulates this logic in term some classes 

from this fictitious bookseller: 

Listing 5.3 Example IDRescorer that omits out-of-stock books and boosts a genre 
public class GenreRescorer implements IDRescorer { 
 
  private final Genre currentGenre; 
 
  public GenreRescorer(Genre currentGenre) { 
    this.currentGenre = currentGenre; 
  } 
 
  public double rescore(long itemID, double originalScore) { 
    Book book = BookManager.lookupBook(itemID); A 
    if (book.getGenre().equals(currentGenre)) { 
      return originalScore * 1.2; B 
    } 
    return originalScore; C 
  } 
 
  public boolean isFiltered(long itemID) { 
    Book book = BookManager.lookupBook(itemID); 
    return book.isOutOfStock(); D 
  } 
} 

A Assume we have some BookManager with this method available 
B Boost estimated preference for matching genre books by 20% 
C Don’t change anything else 
D Filter out books that are not in stock now 

 

The rescore() method boosts estimated preference value for mystery novels. The isFiltered() 

method demonstrates the other use of IDRescorer: it ensures that no out-of-stock books are 

considered for recommendation. This is merely an example, and not relevant to our dating site. Let’s 

turn to apply this idea with the extra data we do have: gender. 

5.3.4 Incorporating gender in an IDRescorer 
We can use an IDRescorer to filter out “items”, or user profiles, for users whose gender may not 

be of romantic interest. We can do this by first guessing the user’s preferred gender by examining the 

gender of profiles rated so far. Then, we filter out profiles of the opposite gender, as seen in listing 5.4. 

Listing 5.4 Gender-based rescoring implementation 
public class GenderRescorer implements IDRescorer { 
 
  private final FastIDSet men; 
  private final FastIDSet women; 
  private final FastIDSet usersRateMoreMen; A 
  private final FastIDSet usersRateLessMen; 
  private final boolean filterMen; 
 
  public GenderRescorer(FastIDSet men, 
                        FastIDSet women, 
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                        FastIDSet usersRateMoreMen, 
                        FastIDSet usersRateLessMen, 
                        long userID, DataModel model) 
      throws TasteException { 
    this.men = men; 
    this.women = women; 
    this.usersRateMoreMen = usersRateMoreMen; 
    this.usersRateLessMen = usersRateLessMen; 
    this.filterMen = ratesMoreMen(userID, model); 
  } 
 
  public static FastIDSet[] parseMenWomen(File genderFile)  
      throws IOException { B 
    FastIDSet men = new FastIDSet(50000); 
    FastIDSet women = new FastIDSet(50000); 
    for (String line : new FileLineIterable(genderFile)) { 
      int comma = line.indexOf(','); 
      char gender = line.charAt(comma + 1); 
      if (gender == 'U') { 
        continue; 
      } 
      long profileID = Long.parseLong(line.substring(0, comma)); 
      if (gender == 'M') { 
        men.add(profileID); 
      } else { 
        women.add(profileID); 
      } 
    } 
    men.rehash(); C 
    women.rehash(); 
    return new FastIDSet[] { men, women }; 
  } 
 
  private boolean ratesMoreMen(long userID, DataModel model)  
      throws TasteException { 
    if (usersRateMoreMen.contains(userID)) { 
      return true; 
    } 
    if (usersRateLessMen.contains(userID)) { 
      return false; 
    } 
    PreferenceArray prefs = model.getPreferencesFromUser(userID); 
    int menCount = 0; 
    int womenCount = 0; 
    for (int i = 0; i < prefs.length(); i++) { 
      long profileID = prefs.get(i).getItemID(); 
      if (men.contains(profileID)) { 
        menCount++; 
      } else if (women.contains(profileID)) { 
        womenCount++; 
      } 
    } 
    boolean ratesMoreMen = menCount > womenCount; D 
    if (ratesMoreMen) { 
      usersRateMoreMen.add(userID); 
    } else { 
      usersRateLessMen.add(userID); 
    } 
    return ratesMoreMen; 
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  } 
 
  @Override 
  public double rescore(long profileID, double originalScore) { 
    return isFiltered(profileID) ? Double.NaN : originalScore; E 
  } 
 
  @Override 
  public boolean isFiltered(long profileID) { 
    return filterMen ? men.contains(profileID) : women.contains(profileID); 
  } 
 
} 

A Cache assessment of which users rate more male profiles 
B Will be called separately later 
C Optimizes data structure again for fast access 
D Users rating more men probably like male profiles 
E Return NaN for profiles that should be excluded 
 

A few things are happening in this code example. The method parseMenWomen() will parse 

gender.dat and create two sets of profile IDs -- those that are known to be men, and those known to 

be women. This is parsed separately from any particular instance of GenderRescorer since these sets 

will be reused many times. ratesMoreMen() will be used to determine and remember whether a user 

seems to rate more male or female profiles. These results are cached in two additional sets. Instances 

of this GenderRescorer will then simply filter out men, or women, as appropriate, by returning NaN 

from rescore(), or true from isFiltered(). 

This ought to have some small but helpful effect on the quality of recommendations. Presumably, 

women who rate male profiles are already being recommended male profiles, because they will be most 

similar to other women who rate male profiles, and will be recommended those profiles. This mechanism 

will ensure this, by filtering female profiles from results. It will cause the Recommender to not even 

attempt to estimate these women’s preference for female profiles because such an estimate is quite a 

guess, and wrong. Of course, the effect of this IDRescorer is limited by the quality of data available: 

we only know the gender of about half of the profiles. 

5.3.5 Building a custom Recommender around an IDRescorer 
It will be useful for our purposes here to wrap up our entire, current recommender engine, plus the new 

IDRescorer, into one implementation. This will become necessary in the next section when we need to 

deploy one self-contained recommender engine to production. Listing 5.5 shows a Recommender 

implementation that contains inside it the user-based recommender engine we’ve identified as best 

suited to our data set. 

Listing 5.5 Complete recommender implementation for Líbímseti 
public class LibimsetiRecommender implements Recommender { 
 
  private final Recommender delegate; 
  private final DataModel model; 
  private final FastIDSet men; 
  private final FastIDSet women; 
 
  public LibimsetiRecommender() throws TasteException, IOException { 
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    this(new FileDataModel( 
        RecommenderWrapper.readResourceToTempFile("ratings.dat")); A 
  } 
 
  public LibimsetiRecommender(DataModel model) 
      throws TasteException, IOException { 
    UserSimilarity similarity = new EuclideanDistanceSimilarity(model); B 
    UserNeighborhood neighborhood = 
        new NearestNUserNeighborhood(2, similarity, model); 
    delegate = 
        new GenericUserBasedRecommender(model, neighborhood, similarity); 
    this.model = model; 
    FastIDSet[] menWomen = GenderRescorer.parseMenWomen( 
        RecommenderWrapper.readResourceToTempFile("gender.dat")); 
    men = menWomen[0]; 
    women = menWomen[1]; 
  } 
 
  @Override 
  public List<RecommendedItem> recommend(long userID, int howMany) 
      throws TasteException { 
    IDRescorer rescorer = new GenderRescorer(men, women, userID, model); C 
    return delegate.recommend(userID, howMany, rescorer); 
  } 
 
  @Override 
  public List<RecommendedItem> recommend(long userID, 
                                         int howMany, 
                                         IDRescorer rescorer) 
      throws TasteException { 
    return delegate.recommend(userID, howMany, rescorer); 
  } 
 
  @Override 
  public float estimatePreference(long userID, long itemID)  
      throws TasteException { 
    IDRescorer rescorer = new GenderRescorer(men, women, userID, model); D 
    return (float) rescorer.rescore( 
        itemID, delegate.estimatePreference(userID, itemID)); 
  } 
 
  @Override 
  public void setPreference(long userID, long itemID, float value) 
      throws TasteException { 
    delegate.setPreference(userID, itemID, value); E 
  } 
 
  @Override 
  public void removePreference(long userID, long itemID)  
      throws TasteException { 
    delegate.removePreference(userID, itemID); 
  } 
 
  @Override 
  public DataModel getDataModel() { 
    return delegate.getDataModel(); 
  } 
 
  @Override 
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  public void refresh(Collection<Refreshable> alreadyRefreshed) { 
    delegate.refresh(alreadyRefreshed); 
  } 
 
} 

A Will need readResourceToTempFile() when deploying in production 
B Construct the same user-based recommender inside 
C Force all recommendations to use our GenderRescorer 
D Rescore estimated preferences too 
E Delegate everything else to underlying user-based recommender 

 

This is a tidy, self-contained packaging of the recommender engine. We can evaluate the entire 

thing, as before. The result is about 1.18: virtually unchanged, though we might feel better with this 

mechanism in place that ought to avoid some seriously undesirable recommendations. Running time has 

increased to 500 milliseconds or so. The rescoring has added significant overhead. For our purposes, we 

will accept this tradeoff and continue forward with LibimsetiRecommender as our final 

implementation for this dating site. 

5.4 Recommending to anonymous users 
Since we are talking about recommenders in practice, this is a good place to discuss how to handle a 

common real-world issue: recommending to users that aren’t users yet. What can be done, for instance, 

for the new user browsing products in an e-commerce web site? This anonymous user has no browsing 

or purchase history, let alone an ID, as far as the site is concerned. It is nevertheless valuable to be 

able to recommend products to such a user. 

One approach is to not bother personalizing the recommendations. That is, when presented with a 

new user, present a general predefined list of products to recommend. It’s simple, and usually better 

than nothing. 

At the other end of the spectrum, a site could promote such anonymous users to real users on first 

visit, and assign an ID and track his or her activity merely based on a web session. This is also works, 

though potentially explodes the number of users, who by definition may never return and for whom little 

information exists. 

5.4.1 Temporary users with PlusAnonymousUserDataModel 
The recommender framework offers a simple way to temporarily add an anonymous user’s information 

into the DataModel: PlusAnonymousUserDataModel. This approach treats anonymous users like 

real users, but only for as long as it takes to make recommendations. They are never added to or 

known to the real underlying DataModel. It is a wrapper around any existing DataModel and is simply 

a drop-in replacement 

This class has a spot for one temporary user, and can hold preferences for one such user at a time. 

As such, a Recommender based on this class must only operate on one anonymous user at a time. 

Listing 5.6 presents LibimsetiWithAnonymousRecommender, which extends the previous 

LibimsetiRecomender with a method that can recommend to an anonymous user. It takes 

preferences as input rather than a user ID, of course. 

Listing 5.6 Anonymous user recommendation for Líbímseti 
public class LibimsetiWithAnonymousRecommender 
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    extends LibimsetiRecommender { 
 
  private final PlusAnonymousUserDataModel plusAnonymousModel; 
 
  public LibimsetiWithAnonymousRecommender() 
      throws TasteException, IOException { 
    this(new FileDataModel( 
        RecommenderWrapper.readResourceToTempFile("ratings.dat"))); 
  } 
 
  public LibimsetiWithAnonymousRecommender(DataModel model) 
      throws TasteException, IOException { 
    super(new PlusAnonymousUserDataModel(model)); A 
    plusAnonymousModel = 
        (PlusAnonymousUserDataModel) getDataModel(); 
  } 
 
  public synchronized List<RecommendedItem> recommend( B 
      PreferenceArray anonymousUserPrefs, int howMany) 
      throws TasteException { 
    plusAnonymousModel.setTempPrefs(anonymousUserPrefs); 
    List<RecommendedItem> recommendations =  
        recommend(PlusAnonymousUserDataModel.TEMP_USER_ID, howMany, null); 
    plusAnonymousModel.setTempPrefs(null); 
    return recommendations; 
  } 
 
  public static void main(String[] args) throws Exception { 
    PreferenceArray anonymousPrefs = 
        new GenericUserPreferenceArray(3); D 
    anonymousPrefs.setUserID(0, 
        PlusAnonymousUserDataModel.TEMP_USER_ID); 
    anonymousPrefs.setItemID(0, 123L); 
    anonymousPrefs.setValue(0, 1.0f); 
    anonymousPrefs.setItemID(1, 123L); 
    anonymousPrefs.setValue(1, 3.0f); 
    anonymousPrefs.setItemID(2, 123L); 
    anonymousPrefs.setValue(2, 2.0f); 
    LibimsetiWithAnonymousRecommender recommender = 
        new LibimsetiWithAnonymousRecommender(); 
    List<RecommendedItem> recommendations = 
        recommender.recommend(anonymousPrefs, 10); 
    System.out.println(recommendations); 
  } 
 
} 

A Wraps the underlying DataModel 
B Note synchronization 
C TEMP_USER_ID is anonymous user’s “ID” 
D Example anonymous user prefs 

 

This implementation otherwise walks and talks like a Recommender and may be used to recommend 

to real users as well. 

5.4.2 Aggregating anonymous users 
Finally, we note that it is also possible to treat all anonymous users as if they are one user. This 

simplifies things. Rather than track those potential users browsing a site separately and storing their 
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browsing histories individually, one could think of all such users as like one big “tire-kicking” user. This 

depends upon the assumption that all such users behave meaningfully similarly.  

 At any time, the technique above can produce recommendations for the anonymous user. This is 

fast. In fact, since the result is the same for all anonymous users, the set of recommendations can be 

stored and recomputed periodically instead of upon every request. In a sense, this variation nearly 

reduces to not personalizing recommendations, and just presenting anonymous users with a fixed set of 

recommendations. 

5.5 Creating a web-enabled service 
Creating a recommender that runs in your IDE is fine, but chances are you are interested in deploying 

this recommender in a production application. Of course, if your application is written in Java, you can 

directly include the Mahout library and your implementation, and call to the Recommender 

implementation however you like. This is quite flexible. 

5.5.1 Constructing a servlet container 
However, you may wish to deploy a recommender as a stand-alone component of your application 

architecture, rather than embed it inside your application code. It is common for services to be exposed 

over the web, via simple HTTP or web services protocols like SOAP. In this scenario, a recommender is 

deployed as a web-accessible service as an independent component in a web container, or even as its 

own server process. This adds complexity, but it allows other applications written in other languages, or 

running on other machines, to access the service. 

 

Figure 5.3 Automated WAR packaging of a recommender and deployment in a servlet container 
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Fortunately, Mahout makes it simple to bundle your Recommender implementation into a deployable 

WAR (web archive) file. Such a component can be readily deployed into any Java Servlet container, such 

as Tomcat (http://tomcat.apache.org/) or Resin (http://www.caucho.org/resin/). This WAR file, 

illustrated in figure 5.3, wraps up your Recommender implementation and exposes it via a simple 

servlet-based HTTP service, RecommenderServlet, and as an Apache Axis-powered web service using 

SOAP over HTTP, RecommenderService. 

5.5.2 Packaging a WAR file 
The compiled code, plus data file, will need to be packaged into a JAR file first. Chances are you have 

already compiled this code with your IDE, which has placed the compiled .class files into some output 

directory -- we’ll call it out. Copy the data set’s ratings.dat and gender.dat files into this same 

output directory, then make a JAR file with a command like “jar cf libimseti.jar -C out/ .”. 

In the taste-web/ module directory, place the libimseti.jar file into the lib/ subdirectory. 

Also, edit recommender.properties to name our recommender as the one that will be deployed. If 

you used the same package as the code listing above, then the right value is 

“mia.recommender.libimseti.LibimsetiRecommender”. 

Now execute “mvn package”. You should find a .war file in the target/ subdirectory named 

“mahout-taste-webapp-0.4-SNAPSHOT.war” (the version number may be higher if, by the time 

you read this, Mahout has published further releases). This is suitable for immediate deployment in a 

servlet container like Tomcat. In fact, this can be dropped in to Tomcat’s webapps/ directory without 

further modification to produce a working web-based instance of your recommender. Note that the 

name of the .war file will become part of the URL used to access the services; you may therefore wish 

to rename it to something shorter like “mahout.war”.  

5.5.3 Testing deployment 
Alternatively, if you like, you can easily test this without bothering to set up Tomcat by using Maven’s 

built-in Jetty plugin. Jetty (http://www.mortbay.org/jetty/) is an embeddable servlet container, which 

serves a function similar to that of Tomcat or Resin.  

Before firing up a test deployment, you’ll need to ensure that your local Mahout installation has been 

compiled and made available to Maven. Execute “mvn install” from the top-level Mahout directory 

and take a coffee break, since this will cause Maven to download other dependencies, compile, and run 

tests, all of which takes ten minutes or so. This only needs to be done once. 

 Having packaged the WAR file above, execute “export MAVEN_OPTS=-Xmx2048m” to ensure 

Maven and Jetty have plenty of heap space available, then from the taste-web/ directory, “mvn 
jetty:run-war”. This will start up the web-enabled recommender services on port 8080 on your local 

machine. 

In your web browser, navigate to the URL http://localhost:8080/mahout-taste-
webapp/RecommenderServlet?userID=1 to retrieve recommendations for user ID 1. This is 

precisely how an external application could access recommendations from your recommender engine, by 

issuing an HTTP GET request for this URL and parsing the simple text result: recommendations, one 

estimated preference value and item ID per line, with best preference first.  
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Listing 5.7 Output of a GET to RecommenderServlet 
10.0 174211 
10.0 143717 
10.0 220429 
10.0 60679 
10.0 215481 
10.0 136297 
9.0 192791 
9.0 157343 
9.0 152029 
9.0 164233 
9.0 207661 
8.0 209192 
7.0 208516 
7.0 196605 
7.0 2322 
7.0 213682 
7.0 205059 
7.0 118631 
7.0 208304 
7.0 212452 

 

To explore the more formal SOAP-based web service API that is available, access 

http://localhost:8080/mahout-taste-webapp/RecommenderService.jws?wsdl to see the 

WSDL (Web Services Definition Language) file that defines the input and output of this web service. It 

exposes a simplified version of the Recommender API. This web services description file can be 

consumed by most web service client tools, to automatically understand and provide access to the API. 

If interested in trying the service directly in a browser, access http://localhost:8080/mahout-
taste-webapp/RecommenderService.jws?method=recommend&userID=1&howMany=10 to see 

the SOAP-based reply from the service. It is the same set of results, just presented as a SOAP response. 

 

 

 

 

 

 

Figure 5.4 Browser rendering of the SOAP response from RecommenderService 

Normally, at this point, you would be sanity-checking the results. Put yourself in your users’ shoes -- 

do the recommendations make sense? Here, we don’t know who the users are or what the profiles are 

like, so we can’t do much to interpret the results intuitively. This would not be true when developing 
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your own recommender engine, where a look at the actual recommendations would likely give insight 

into problems or opportunities for refinement. This would lead to more cycles of experimentation and 

modification to make the results match the most appropriate answers for your problem domain. 

5.6 Updating and monitoring the Recommender 
Now you have a live web-based recommender service running, but it’s not a static, fixed system. It’s 

natural to think about how service will be updated and monitored in production. 

5.6.1 Updating recommender data directly 
Of course, the data on which recommendations are based changes constantly in a real recommender 

engine system. Standard DataModel implementations will automatically use the most recent data 

available from your underlying data source, so, at a high level, there is nothing special that needs to be 

done to cause the recommender engine to incorporate new data. For example, if you had based your 

recommender engine on data in a database, by using a JDBCDataModel, then by just updating the 

underlying database table with new data, the recommender engine would begin using that data. 

However, for performance, many components cache information and intermediate computations. 

These caches update eventually, but, this means that new data does not necessarily immediately affect 

recommendations. It is possible to force all caches to clear by calling Recommender.refresh(), and, 

this can be done by invoking the refresh method on the SOAP-based interface that is exposed by the 

web application harness. If needed, this can be invoked by other parts of your enterprise architecture. 

5.6.2 Updating file-based data 
File-based preference data, accessed via a FileDataModel, deserves some special mention. The file 

can be updated or overwritten in order to deploy updated information; FileDataModel will shortly 

thereafter notice the update and reload the file. 

This can be slow, and memory-intensive, as both the old and new model will be in memory at the 

same time. Now is a good time to recall “update files,” introduced in an earlier chapter. Instead of 

replacing or updating the main data file, it is more efficient to add update files representing recent 

updates. The update files are like “diffs” and when placed in the same directory as the main data file 

and named appropriately, will be detected and applied quickly to the in-memory representation of the 

preference data. 

For example, an application might each hour locate all preference data created, deleted or changed 

in the last 60+ minutes, create an update file, and copy it alongside the main data file. Recall also that 

for efficiency, all of these files may be compressed. 

5.6.3 Monitoring performance 
Monitoring the health of this recommender service is straightforward, even if support for monitoring is 

outside the scope of Mahout itself. Any monitoring tool that can check the health of a web-based 

service, accessed via HTTP, can easily check that the recommender service is live by accessing the 

service URL and verifying a valid answer is returned. Such tools can and should also monitor the time it 

takes to answer these requests and create an alert if performance suddenly degrades. Normally, the 

time to compute a recommendation is quite consistent and should not vary greatly. 
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5.7 Summary 
In this chapter, we took an in-depth look at a real, large data set made available from the Czech dating 

site Líbímseti. It provides 17 million ratings of over a hundred thousand profiles on the site from over a 

hundred thousand users. We set out to create a recommender for this site that could recommend 

profiles, or people, to its users. 

We tried most of the recommender approaches seen so far with this data set and used evaluation 

techniques to choose an implementation that seemed to produce the best recommendations: a user-

based recommender using a Euclidean distance-based similarity metric and nearest-2 neighborhood 

definition. 

From there, we explored mixing in additional information from the data set: gender of the users 

featured in many of the profiles. We tried creating an item similarity metric based on this data. We met 

the IDRescorer interface, a practical tool that can be used to modify results in ways specific to one 

problem domain. We achieved a small improvement by using an IDRescorer to take account of gender 

and exclude recommendations from the gender that does not apparently interest the user. 

Having tested performance and found that it performs acceptably (about 500ms per 

recommendation) we constructed a deployable version of our recommender engine, and automatically 

created a web-enabled application around it using Mahout. We briefly examined how to deploy and 

access this component via HTTP and SOAP. 

Finally we reviewed how to update, at runtime, the recommender’s underlying data.  

This concludes the journey from data to production-ready recommender service. This 

implementation can comfortably digest this data set of 17 million ratings on one machine and produce 

recommendations in real time. What happens when the data outgrows one machine? In the next 

chapter, we’ll examine how to handle a much larger data set with Hadoop. 
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6 
Distributing Recommendation 

 Computations 

This chapter covers 

 Analyzing a massive data set from Wikipedia 

 Producing recommendations with Hadoop and distributed algorithms 

 Pseudo-distributing existing non-distributed recommenders 

We’ve looked at increasingly large data sets since the beginning of this book: from tens of 

preferences, to 100,000, to 10 million and then 17 million. This is still only medium-sized in the world of 

recommenders. In this chapter, we’ll up the ante again by tackling a larger data set of 130 million 

“preferences” in the form of article-to-article links from Wikipedia’s massive corpus8

While 130 million preferences is still a manageable size for demonstration purposes, it is of such a 

scale that a single machine would have trouble processing recommendations from it in the way we’ve 

seen to date. We will need to deploy a new species of recommender algorithm, using a distributed 

computing approach based on the MapReduce paradigm and Hadoop. 

. In this data set, 

both users and items are articles, which also demonstrates how recommenders can be useful applied to 

less conventional contexts. 

6.1 Analyzing the massive Wikipedia data set 
Wikipedia (http://wikipedia.org) is a well-known online encyclopedia whose contents may be edited and 

maintained by users. It reports that in May 2010 it contained over 3.2M articles written in English alone. 

The Freebase Wikipedia Extraction project (http://download.freebase.com/wex/) estimates the size of 

just the English articles to be about 42GB. Being web-based, Wikipedia articles can and do link to one 

                                                   
 
8 Readers of earlier drafts will recall the subject of this chapter was the Netflix Prize data set. This data set is no longer officially 
distributed for legal reasons, and so is no longer a suitable example data set. 
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another. It is these links that are of interest. We will think of articles as “users”, and articles that an 

article points to as “items” that the source article “likes”.  

Fortunately, we do not even have to download Freebase’s well-organized Wikipedia extract and parse 

out all these links. Researcher Henry Haselgrove has already extracted all article links and published 

just this information at http://users.on.net/~henry/home/wikipedia.htm. This further filters out links to 

ancillary resources like article discussion pages, images, and such. This data set has also represented 

articles by their numeric ID rather than title, which is helpful, since Mahout treats all users and items as 

numeric IDs. 

Before continuing, download and extract links-simple-sorted.zip. 

6.1.1 Analyzing the data set 
This link data set contains 130,160,392 links from 5,706,070 articles, to 3,773,865 distinct other 

articles. Note that there is no explicit preference or rating; there are just associations from articles to 

articles. These are “boolean preferences” in the language of the framework. Associations are one-way; a 

link from A to B does not imply any association from B to A. There are not significantly more items than 

users or vice versa, so neither a user-based nor item-based algorithms suggests itself as better from an 

performance perspective. If using an algorithm that involves a similarity metric, one that does not 

depend on preference values is appropriate, like LogLikelihoodSimilarity. 

How may we intuitively understand what the data means, and what shall we expect from the 

recommendations? A link from article A to B implies that B provides information related to A, typically 

background information on entities or ideas referenced in the article. A recommender system built on 

this data will recommend articles that are pointed to by other articles which also point to some of the 

same articles that A points to. These other articles might be interpreted as articles that A should link to, 

but does not. They could be articles that are simply also of interest to a reader of A. In some cases, the 

recommendations may reveal interesting or serendipitous associations that are not even implied by 

article A. 

6.1.2 Struggling with scale 
Deploying a non-distributed recommender engine based on this data could prove difficult. The data 

alone would consume about 2GB of JVM heap space with Mahout, and overall heap would likely need to 

be 2.5GB. On some 32-bit platforms and JVMs, this actually exceeds the maximum heap size that can 

be selected. This means a 64-bit machine would be required, if not immediately then soon. Depending 

on the algorithm, recommendation time could increase to over one second, which begins to be a long 

time for a “real-time” recommender engine supporting a modern web application.  

With enough hardware, this could perform acceptably. But what happens when the input grows to a 

few billion preferences, and heap requirements top 32GB? And beyond that? For a time, one could 

combat scale by throwing out progressively more of the “noise” data to keep its size down. Judging 

what is noise begins to be a problem of accuracy and scale in its own right. 

It’s unfashionable these days to be unable to cope with data beyond some scale, to have some hard 

limit on what your system can handle. Computing resources are readily available in large quantities; the 

problem here is putting enough computing resources into one box. It is disproportionately expensive to 

make a large machine even larger, as compared to obtaining more small machines. This massive single 
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machine becomes a single point of failure. And, it may be hard to find any efficient way to take 

advantage of its expensive power when not in use by the recommender engine process.  

This Wikipedia link data set size represents about the practical upper limit of how much data can be 

thrown at a Mahout-based real-time recommender on reasonable server hardware -- and it’s not even 

that big by modern standards. Beyond about this scale, a new approach is needed. 

6.1.2 Evaluating benefits and drawbacks of distributing computations 
A solution lies in using many small machines, not one big one, for all the reasons that using one big 

machine is undesirable. An organization may own and operate, already, many small machines available 

that aren’t fully utilized, and whose extra capacity could be used towards computing recommendations. 

Furthermore, the resources of many machines are readily available these days through cloud computing 

providers like Amazon’s EC2 service (http://aws.amazon.com). 

Figure 6.1 Distributed computation helps by breaking up a problem too big for one server into pieces that several 
smaller servers can handle. 

Distributing a recommendation computation radically changes the recommender engine problem. 

Every algorithm we’ve seen so far computes recommendations as a function of, in theory, every single 

preference value. To recommend new links for a single article from the Wikipedia link data set, we 

would need access to all article-to-article links; the computation could draw on any of them. However, 

at large scale, access to all or even most of the data is not possible at any one time, because of its 

sheer size. All of the approaches we’ve seen so far go out the window, at least in anything like their 

current form. Distributed recommender engine computations are a whole new ball game. 

 To be clear, distributing a computation doesn’t make it more efficient. On the contrary, it usually 

makes it require significantly more resources. For instance, moving data between many small machines 

consumes network resources. The computation must often be structured in a way that involves 

computing and storing many intermediate results, which could take significant processing time to 

serialize, store, and deserialize later. The software that orchestrates these operations consumes non-

trivial memory and processing power. 

It should be noted that such large, distributed computations are necessarily performed offline, not in 

real time in response to user requests. Even small computations of this form take at least minutes, not 

milliseconds, to complete. Commonly, recommendations would be recomputed at regular intervals, 

stored, and returned to the user at runtime. 

Licensed to nancy chen <amigo4u2009@gmail.com>

http://aws.amazon.com/�


90 
 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 

                   http://www.manning-sandbox.com/forum.jspa?forumID=623 
 

However, these approaches offer a means to complete a recommender engine computation at scales 

where non-distributed computations cannot even start due to lack of resources on a single machine. 

Because distributed computations can leverage bits of resources from many machines, they offer the 

possibility of using spare, unused resources from existing machines rather than dedicated machines. 

Finally, distributed computations can allow a computation to complete earlier -- even though it might 

take more raw processing time. Say a distributed computation takes twice as much CPU time as its non-

distributed counterpart. If 10 CPUs work on the computation, it will complete 5 times faster than a non-

distributed version, which can only take advantage of one machine’s resources. 

 

6.2 Distributing an item-based algorithm 
For problems of this scale, it is desirable and necessary to deploy a distributed approach to produce 

recommendations. First, we will sketch out a distributed variation on the item-based recommender 

approach we have already seen. It will be similar in some ways to the non-distributed item-based 

recommender algorithm we have already examined. But it will certainly look different, because the non-

distributed algorithm does not fully translate to the distributed world. Then we will use Hadoop to run 

the algorithm. 

6.2.1 Constructing a co-occurrence matrix 
The algorithm we will use is best explained, and implemented, in terms of simple matrix operations. If 

the last time you touched matrices was in a math textbook years ago, don’t worry: the trickiest 

operation you’ll need to recall is matrix multiplication. There will be no determinants, row reduction, or 

eigenvalues here. 

 Recall that the item-based implementations we’ve seen so far rely on an ItemSimilarity 

implementation, which provides some notion of the degree of similarity between any pair of items. 

Imagine computing a similarity for every pair of items and putting the results into a giant matrix. It 

would be a square matrix, with a number of rows and columns equal to the number of items in the data 

model. Each row (and each column) would express similarities between one particular item and all other 

items. It will be useful to think of these rows and columns as vectors, in fact. It would be symmetric 

across the diagonal as well; because the similarity between items X and Y is the same as the similarity 

between items Y and X, the entry in row X and column Y would equal the entry in row Y and column X. 

We need something like this for the algorithm: a “co-occurrence matrix”. Instead of similarity 

between every pair of items, we will instead compute the number of times each pair of items occurs 

together in some user’s list of preferences, in order to fill out the matrix. For instance, if there are 9 

users who express some preference for both items X and Y, then X and Y co-occur 9 times. Two items 

that never appear together in any user’s preferences have a co-occurrence of 0. And, conceptually, each 

item co-occurs with itself every time any user expresses a preference for it, though this count will not 

be useful. 

Co-occurrence is like similarity; the more two items turn up together, the more related or similar 

they probably are. So, the co-occurrence matrix plays a role like that of ItemSimilarity in the item-

based algorithm we saw before. 
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 101 102 103 104 105 106 107 

101 
5 3 4 4 2 2 1 

102 
3 3 3 2 1 1 0 

103 
4 3 4 3 1 2 0 

104 
4 2 3 4 2 2 1 

105 
2 1 1 2 2 1 1 

106 
2 1 2 2 1 2 0 

107 
1 0 0 1 1 0 1 

Table 6.1 The co-occurrence matrix for items in simple example data set. The first row and column are 
labels and not part of the matrix. 

Producing the matrix is a simple matter of counting. Note that the entries in the matrix are not 

affected by preference values. These values will enter the computation later. Table 6.1 shows the co-

occurrence matrix for the small example set of preference values that we have been using throughout 

the book. As advertised, it is symmetric across the diagonal. There are 7 items, and the matrix is a 7x7 

square matrix. The values on the diagonal, it turns out, will not be of use to the algorithm, but they are 

included for completeness. 

6.2.2 Computing user vectors 
The next step in converting our previous recommender approaches to a matrix-based distributed 

computation is to conceive of a user’s preferences as a vector. We already did this, in a way, when 

discussing the Euclidean-distance-based similarity metric, where users were thought of as points in 

space, and similarity based on the distance between them. 

 Likewise, in a data model with n items, we can think of user preferences as like a vector over n 

dimensions, one dimension for each item. The user’s preference values for items are the values in the 

vector. Items that the user expresses no preference for map to a 0 value in the vector. Such a vector is 

typically quite sparse, and mostly zeroes, because users typically express a preference for only a small 

subset of all items. 

For example, in our small example data set, user 3’s preferences correspond to the vector [2.0, 0.0, 

0.0, 4.0, 4.5, 0.0, 5.0]. To produce recommendations, we will need such a vector for each user. 

6.2.3 Producing the recommendations 
To compute recommendations for user 3, we merely multiply this vector, as a column vector, with 

the co-occurrence matrix. 
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 101 102 103 104 105 106 107 
 

U3 
 

R 

101 
5 3 4 4 2 2 1  2.0  40.0 

102 
3 3 3 2 1 1 0  0.0  18.5 

103 
4 3 4 3 1 2 0 x 0.0 = 24.5 

104 
4 2 3 4 2 2 1  4.0  40.0 

105 
2 1 1 2 2 1 1  4.5  26.0 

106 
2 1 2 2 1 2 0  0.0  16.5 

107 
1 0 0 1 1 0 1  5.0  15.5 

 

Table 6.2 Multiplying the co-occurrence matrix with user 3’s preference vector (U3) to produce a vector 
that leads to recommendations, R. 

Take a moment to review how matrix multiplication works, if needed 

(http://en.wikipedia.org/wiki/Matrix_multiplication). The product of the co-occurrence matrix and a user 

vector is itself a vector whose dimension is also equal to the number of items. The values in this 

resulting vector, R, lead us directly to recommendations: the highest values in R correspond to the best 

recommendations.  

Table 6.2 shows this multiplication for user 3 and our small example data set, and the resulting 

vector R. We will ignore the values in rows of R corresponding to items 101, 104, 105 and 107 because 

these are not eligible for recommendation: user 3 already expresses a preference for these items. Of 

the remaining items, the entry for item 103 is highest, with value 24.5, and would therefore be the top 

recommendation, followed by 102 and 106. 

6.2.4 Understanding the results 
Let’s pause to understand what happened above. Why do higher values in R correspond to better 

recommendations? Computing each entry in R is analogous to computing an estimated preference for 

one item, but, why is that value like an estimated preference? 

 Recall that computing, for example, the third entry in R entails computing the dot product between 

the third row vector of the matrix, and column vector U3. This is the sum of the products of each 

corresponding pair of entries in the vectors: 4(2.0) + 3(0.0) + 4(0.0) + 3(4.0) + 1(4.5) + 2(0.0) + 

0(5.0) = 24.5 

 That third row contains co-occurrences between item 103 and all other items. Intuitively, if item 

103 co-occurs with many items that user 3 expresses a preference for, then it is probably something 

that user 3 would like. The formula above sums the products of co-occurrences and preference values. 
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When item 103’s co-occurrences overlap a lot with highly preferred items, the sum contains products of 

large co-occurrences and large preference values. That makes the sum larger, which is the value of the 

entry in R. This is why larger values in R correspond to good recommendations. 

 Note that the values in R do not represent an estimated preference value -- they’re far too large, 

for one. These could be normalized into estimated preference values with some additional computation, 

if desired. But for our purposes, normalization doesn’t matter, since we are mostly concerned with the 

ordering of recommendations, not the exact values on which the ordering depends. 

6.2.5 Towards a distributed implementation 
This is all very interesting, but what about this algorithm is more suitable for large-scale distributed 

implementation? The elements of this algorithm each involve only a subset of all data at any one time. 

For example, creating user vectors is merely a matter of collecting all preference values for one user 

and constructing a vector. Counting co-occurrences only requires examining one vector at a time. 

Computing the resulting recommendation vector only requires loading one row or column of the matrix 

at a time. Further, many elements of the computation just rely on collecting related data into one place 

efficiently -- for example, creating user vectors from all the individual preference values. The 

MapReduce paradigm was designed for computations with exactly these features. 

6.3 Implementing a distributed algorithm with Hadoop 
Now that we’ve sketched the algorithm, we can translate it into a form that can be implemented with 

MapReduce and Hadoop. Hadoop, as we’ve noted, is a popular distributed computing framework that 

includes two components of interest: a distributed file system, HDFS, and an implementation of the 

MapReduce paradigm. 

For purposes of this chapter, we will use the Hadoop APIs found in version 0.19.x of the framework. 

The code presented below can be found in its complete form within Mahout, and should be runnable 

with Hadoop 0.19.x or 0.20.x. It may not work with later versions, as these APIs are being phased out. 

6.3.1 Introducing MapReduce 
MapReduce is a way of thinking about and structuring computations in a way that makes them 

amenable to distributing over many machines. The shape of a MapReduce computation is as follows: 

 

1. Input is assembled in the form of many key-value (K1,V1) pairs, typically as input files on an 

HDFS instance 

2. A “map” function is applied to each (K1,V1) pair, which results in zero or more key-value pairs of 
a different kind (K2,V2) 

3. All V2 for each K2 are combined 

4. A “reduce” function is called for each K2 and all its associated V2, which results in zero or more 
key-value pairs of yet a different kind (K3,V3), output back to HDFS 

 

This may sound like an odd pattern for a computation. As it happens, many problems can be fit into 

this structure, or a series of them chained together. Problems framed in this way may then be efficiently 

distributed with Hadoop and HDFS. 
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6.3.2 Translating to MapReduce: Generating user vectors 
In our case, the computation begins with the unarchived links data file as input. It lines are not of the 

form “userID,itemID,preference” that we have worked with in the past. Instead they are of the form 

“userID: itemID1 itemID2 itemID3 …”. This file is placed onto an HDFS instance in order to be available 

to Hadoop -- more on how this is done a few sections later. 

The first MapReduce we use to implement this will construct user vectors: 

 

1. Input files are treated as (Long,String) pairs by the framework, where the Long key is a 
position in the file and String value is the line of the text file. 

2. Each line is parsed into user ID and several item IDs by a map function. The function emits new 
key-value pairs: user ID mapped to item ID, for each item ID 

3. The framework collects all item IDs that were mapped to each user ID together. 

4. A reduce function constructors a Vector from all item IDs for the user, and outputs the user ID 
mapped to the user’s preference vector. All values in this vector are 0 or 1. 

 

An implementation of this idea may be found in Listing 6.1 and Listing 6.2, below, as an 

implementation of both Hadoop’s MapReduce Mapper and Reducer interfaces. This is typical of 

MapReduce computations, to have an implementation consist of a related pair of classes like this. These 

are all we need to implement the process above; Hadoop will take care of the rest. 

Listing 6.1 Mapper which parses Wikipedia link file into ItemPrefWritables for each user 
public class WikipediaToItemPrefsMapper extends MapReduceBase implements 
    Mapper<LongWritable,Text,VLongWritable,VLongWritable> { 
 
  public void map(LongWritable key, 
                  Text value, 
                  OutputCollector<VLongWritable,VLongWritable> output, 
                  Reporter reporter) throws IOException { 
    Matcher m = Pattern.compile("(\\d+)").matcher(value.toString()); 
    m.find(); A 
    VLongWritable userID = new VLongWritable(Long.parseLong(m.group())); 
    VLongWritable itemID = new VLongWritable(); 
    while (m.find()) { 
      itemID.set(Long.parseLong(m.group())); 
      output.collect(userID, itemID); B 
    } 
  } 
} 
 
A Locate user ID 
B Emit user / item pair for each item ID 

Listing 6.2 Reducer which produces Vectors from a user’s item preferences 
public class ToUserVectorReducer extends MapReduceBase implements 
    Reducer<VLongWritable,VLongWritable,VLongWritable,VectorWritable> { 
   
  public void reduce(VLongWritable userID, 
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                     Iterator<VLongWritable> itemPrefs, 
                     OutputCollector<VLongWritable,VectorWritable> output, 
                     Reporter reporter) throws IOException { 
    Vector userVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100); B 
    while (itemPrefs.hasNext()) {A 
      VLongWritable itemPref = itemPrefs.next(); 
      userVector.set(itemPref.get(), 1.0f); C 
    } 
    output.collect(userID, new VectorWritable(userVector)); 
  } 
} 
 
A Iterate over all item-preference pairs for a user 
B Create an empty, reasonably-sized sparse vector 
C Set dimension “item ID” to item’s preference value 

 

These are simplified versions of the real implementation in Mahout, for illustration. They do not 

include optimizations and configuration options, but they would run and produce usable output. 

6.3.3 Translating to MapReduce: Calculating co-occurrence 
The next phase of the computation is another MapReduce that uses the output of the first MapReduce to 

compute co-occurrences. 

 

1.    Input is user IDs mapped to Vectors of user preferences -- the output of the last MapReduce. 

2.    The map function determines all co-occurrences from one user’s preferences, and emits one      

pair of item IDs for each co-occurrence -- item ID mapped to item ID and a count of 1. Both 
mappings, from one item ID to the other and vice versa, are recorded. 

3.    The framework collects, for each item, all co-occurrences mapped from that item. 

4.    The reducer tallies up all counts, for each item ID, all co-occurrences that it receives and 

constructs a new Vector, which represents all co-occurrences for one item with count of number 

of times they have co-occurred. These can be used as the rows -- or columns -- of the co-
occurrence matrix. 

 

The output of this phase is in fact the co-occurrence matrix. Again, Listing 6.3 and Listing 6.4 

provide a simplified look at how this is implemented in Mahout on top of Hadoop. Again we have a pair 

of related implementations, of Mapper and Reducer. 

Listing 6.3 Mapper component of co-occurrence computation 
public class UserVectorToCooccurrenceMapper extends MapReduceBase 
    implements Mapper<VLongWritable,RandomAccessSparseVectorWritable, 
                      IntWritable,EntityCountWritable> { 
 
  public void map(VLongWritable userID, 
                  RandomAccessSparseVectorWritable userVector, 
                  OutputCollector<IntWritable,EntityCountWritable> output, 
                  Reporter reporter) throws IOException { 
    Iterator<Vector.Element> it = userVector.get().iterateNonZero(); A 
    IndexIndexWritable entityEntity = new IndexIndexWritable(); 
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    IntWritable one = new IntWritable(1); 
    while (it.hasNext()) { 
      int index1 = it.next().index(); 
      Iterator<Vector.Element> it2 = userVector.iterateNonZero(); 
      while (it2.hasNext()) { 
        int index2 = it2.next().index(); 
        if (index1 != index2) { 
          entityEntity.set(index1, index2); 
          output.collect(entityEntity, one); B 
        } 
      } 
    } 
  } 
 

A Only necessary to iterate over the non-zero elements 
B Record count of 1 

Listing 6.4 Reducer component of co-occurrence computation 
public class UserVectorToCooccurrenceReducer extends MapReduceBase implements 
    Reducer<IndexIndexWritable,IntWritable,IntWritable,VectorWritable> { 
 
  private int lastItem1ID = Integer.MIN_VALUE; 
  private int lastItem2ID = Integer.MIN_VALUE; 
  private Vector cooccurrenceRow = null; 
  private int count = 0; 
 
  public void reduce(IndexIndexWritable entityEntity, 
                     Iterator<IntWritable> counts, 
                     OutputCollector<IntWritable,VectorWritable> output, 
                     Reporter reporter) throws IOException { 
 
    int item1ID = entityEntity.getAID(); 
    int item2ID = entityEntity.getBID(); 
    if (item1ID == lastItem1ID) { 
      if (item2ID == lastItem2ID) { 
        count += CooccurrenceCombiner.sum(counts); A 
      } else { 
        if (cooccurrenceRow == null) { 
          cooccurrenceRow = new RandomAccessSparseVector(Integer.MAX_VALUE); 
        } 
        cooccurrenceRow.set(item2ID, count); B 
        lastItem2ID = item2ID; 
        count = CooccurrenceCombiner.sum(counts); 
      } 
    } else { 
      if (cooccurrenceRow != null) { 
        output.collect(new IntWritable(lastItem1ID), 
                       new VectorWritable(cooccurrenceRow)); C 
      } 
      lastItem1ID = item1ID; 
      lastItem2ID = item2ID; 
      cooccurrenceRow = null; 
      count = CooccurrenceCombiner.sum(counts); 
    } 
  } 
} 
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A Accumulate counts for item 1 / 2 
B Record counts for item 1 / 2 
C Done, record entire item 1 vector 

 

 Above in the mapper, note how we output two item IDs and a count of “1” every time two items co-

occur. That may seem redundant, and it is. However, it’s done to enable an optimization in Hadoop 

known as a combiner. A combiner is like a mini-reduce phase that runs after a mapper. It can combine 

multiple map outputs into one that represents the same information, before storing and sending to 

reducers. For example, imagine items 123 and 456 co-occur ten times. Normally, the map phase would 

output ten EntityCountWritables, each recording that 123 and 456 co-occurred once. The combiner 

can combine these ten records into one, with count 10. 

 This useful detail is not applicable in all situations, but is perfect for this situation. It is implemented 

in Mahout, and can be seen in the source code, for the interested. With the co-occurrence matrix in 

hand, we can proceed to the final computation of recommendations. 

6.3.4 Translating to MapReduce: Rethinking matrix multiplication 
We are ready to use MapReduce to multiply the user vectors computed in step 1, and the co-occurrence 

matrix from step 2, to produce a recommendation vector from which we may derive recommendations.  

 However we will perform the multiplication in a different way that is more efficient here, and more 

naturally fits the shape of a MapReduce computation. We will not perform conventional matrix 

multiplication, wherein each row is multiplied against the user vector (as a column vector), to produce 

one element in the result R: 

 
for each row i in the co-occurrence matrix 
 compute dot product of row vector i with the user vector 
 assign dot product to ith element of R 

 

Why depart from the algorithm we all learned in school? The reason is purely performance, and this 

is a good opportunity to examine the kind of thinking necessary to achieve performance at scale when 

designing large matrix and vector operations. The conventional algorithm necessarily touches the entire 

co-occurrence matrix, since it needs to perform a vector dot product with each row. Anything that 

touches the entire input is “bad” here since the input may be staggeringly large and not even available 

locally. Instead, we note that matrix multiplication can be accomplished as a function of the co-

occurrence matrix columns: 

 
assign R to be the zero vector 
for each column i in the co-occurrence matrix 
 multiply column vector i by the ith element of the user vector 
 add this vector to R 

 

Take a moment to convince yourself that this is also a correct way to define this matrix 

multiplication, with a small example perhaps. So far, this isn’t an improvement: it also touches the 

entire co-occurrence matrix, by column. 

However, note that wherever element i of the user vector is 0, we can skip the loop iteration 

entirely, because the product will just be the zero vector and does not affect the result. So, this loop 
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need only execute for each non-zero element of the user vector. The number of columns loaded will be 

equal to the number of preferences that the user expresses, which is far smaller than the total number 

of columns. 

And, expressed this way, we can distribute the computation efficiently. Column vector i can be 

output along with all elements it needs to be multiplied against. The products can be computed and 

saved independently of handling of all other column vectors. 

 

6.3.5 Translating to MapReduce: Matrix multiplication by partial products 
We already have the columns of the co-occurrence matrix from an earlier step. Because the matrix is 

symmetric, the rows and columns are identical, so we can use this output as either rows or columns, 

conceptually. These columns are keyed by item ID. We must multiply each by every non-zero 

preference value for that item, across all user vectors. That is, we need to map item IDs to a user ID 

and preference value, and then collect them together in a reducer. After multiplying the co-occurrence 

column by each value, we have a vector that forms part of the final recommender vector R for one user. 

The difficult part here is that we want to combine two different kinds of data in one computation: co-

occurrence column vectors, and user preference values. This isn’t by nature possible in Hadoop, since 

values in a reducer can be of one Writable type only. We can get around this by crafting Writable 

that contains either one or the other type of data: a VectorOrPrefWritable. While it may be viewed 

as a hack, it may be valuable or necessary in designing a distributed computation to bend some rules to 

achieve an elegant, efficient computation. 

So, the mapper phase here will actually contain two mappers, each producing different types of 

reducer input: 

 

5. Input for mapper 1 is the co-occurrence matrix: item IDs as keys, mapped to columns as 

Vectors. 

6. The map function simply echoes its input, but with the Vector wrapped in a 
VectorOrPrefWritable. 

7. Input for mapper 2 is again the user vectors: user IDs as keys, mapped to preference Vectors 

8. For each non-zero value in the user vector, the map function outputs item ID mapped to the user 

ID and preference value (here, all non-zero values are 1), wrapped in a 
VectorOrPrefWritable 

9. The framework collects together, by item ID, the co-occurrence column and all user ID / 
preference value pairs. 

10. The reducer unpacks this input and performs all multiplications with the co-occurrence column 

vector. (Here, since values are 1, we can skip the multiplication.) For each user ID pair, it outputs 
as a Vector the product, which is part of the user’s recommendation vector R. 

 

 

Listing 6.5 Wrapping co-occurrence columns 
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public class CooccurrenceColumnWrapperMapper extends MapReduceBase  
    implements Mapper<IntWritable,VectorWritable, 
                      IntWritable,VectorOrPrefWritable> { 
 
  public void map(IntWritable key, 
                  VectorWritable value, 
                  OutputCollector<IntWritable,VectorOrPrefWritable> output, 
                  Reporter reporter) throws IOException { 
    output.collect(key, new VectorOrPrefWritable(value.get())); 
  } 
} 

 

Listing 6.5 shows the co-occurrence columns being simply wrapped in VectorOrPrefWritable. 

 

Listing 6.6 Splitting user vectors 
public class UserVectorSplitterMapper extends MapReduceBase  
    implements Mapper<VLongWritable,VectorWritable, 
                      IntWritable,VectorOrPrefWritable> { 
 
  public void map(VLongWritable key, 
                  VectorWritable value, 
                  OutputCollector<IntWritable,VectorOrPrefWritable> output, 
                  Reporter reporter) throws IOException { 
    long userID = key.get(); 
    Vector userVector = value.get(); 
    Iterator<Vector.Element> it = userVector.iterateNonZero(); 
    while (it.hasNext()) { 
      Vector.Element e = it.next(); 
      int itemIndex = e.index(); 
      float preferenceValue = (float) e.get(); 
      itemIndexWritable.set(itemIndex); 
      output.collect(new IntWritable(itemIndex),  
                     new VectorOrPrefWritable(userID, preferenceValue)); 
    } 
  } 
} 

 

In Listing 6.6, user vectors are “split” into their individual preference values, and output, mapped by 

item ID rather than user ID. 

 

Listing 6.7 Computing partial recommendation vectors 

public class PartialMultiplyReducer extends MapReduceBase implements 
    Reducer<IntWritable,VectorOrPrefWritable,VLongWritable,VectorWritable> { 
 
  public void reduce(IntWritable key, 
                     Iterator<VectorOrPrefWritable> values, 
                     final OutputCollector<VLongWritable,VectorWritable> output, 
                     Reporter reporter) throws IOException { 
 
    OpenLongFloatHashMap savedValues = new OpenLongFloatHashMap(); 
    Vector cooccurrenceColumn = null; 
    final int itemIndex = key.get(); 
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    final VLongWritable userIDWritable = new VLongWritable(); 
    final VectorWritable vectorWritable = new VectorWritable(); 
    vectorWritable.setWritesLaxPrecision(true); 
 
    while (values.hasNext()) { 
 
      VectorOrPrefWritable value = values.next(); 
      if (value.getVector() == null) { 
 
        long userID = value.getUserID(); A 
        float preferenceValue = value.getValue(); 
         
        if (cooccurrenceColumn == null) { B 
          savedValues.put(userID, preferenceValue); 
        } else { C 
          Vector partialProduct = cooccurrenceColumn; D 
          partialProduct.set(itemIndex, Double.NEGATIVE_INFINITY); E 
          userIDWritable.set(userID); 
          vectorWritable.set(partialProduct); 
          output.collect(userIDWritable, vectorWritable); 
        } 
 
      } else { 
 
        cooccurrenceColumn = value.getVector(); F 
 
        final Vector theColumn = cooccurrenceColumn; 
        savedValues.forEachPair(new LongFloatProcedure() { 
          public boolean apply(long userID, float value) { 
            Vector partialProduct = theColumn.times(value); 
            partialProduct.set(itemIndex, Double.NEGATIVE_INFINITY); 
            userIDWritable.set(userID); 
            vectorWritable.set(partialProduct); 
            try { 
              output.collect(userIDWritable, vectorWritable); G 
            } catch (IOException ioe) { 
              throw new IllegalStateException(ioe); 
            } 
            return true; 
          } 
        }); 
        savedValues.clear(); 
      } 
    } 
 
  } 
} 
 
A Then it’s a user ID / preference 
B Co-occurrence column vector not yet seen 
C Have column vector so multiply 
D Normally, multiply by preference value 
E Makes sure the item isn’t recommended 
F Found the column vector 
G Output product for all saved values 
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Most of the complexity of listing 6.7, which shows the output of the two previous mappers being 

multiplied, comes from the fact that it’s not known which value will contain the co-occurrence vector. 

Until it’s seen, the user IDs and preference values must be stored temporarily for later multiplication 

with the vector, once it appears. 

6.3.6 Translating to MapReduce: Making recommendations 
At last, we just need to assemble the pieces of the recommendation vector for each user and make 

recommendations. Listing 6.8 shows this in action. 

 

11. The input for the mapper is the output of the previous step: user IDs as keys mapped to a part of 

that user’s recommendation vector, as a Vector. 

12. The mapper merely passes through these keys and values. 

13. The framework collects all of the partial vectors for each user ID. 

14. The reducer sums all partial vectors for a user ID to produce that user’s recommendation vector. 
The highest values in the vector are the best recommendations and are output. 

 

Listing 6.8 Producing recommendations from vector 
public class AggregateAndRecommendReducer extends MapReduceBase  
    implements Reducer<VLongWritable,VectorWritable, 
                       VLongWritable,RecommendedItemsWritable> { 
 
  public void reduce(VLongWritable key, 
                     Iterator<VectorWritable> values, 
                     OutputCollector<VLongWritable, 
                                     RecommendedItemsWritable> output, 
                     Reporter reporter) throws IOException { 
    Vector recommendationVector = values.next().get(); 
    while (values.hasNext()) { A 
      recommendationVector = recommendationVector.plus(values.next().get()); 
    } 
 
    Queue<RecommendedItem> topItems =  
      new PriorityQueue<RecommendedItem>(10, 
        Collections.reverseOrder( 
          ByValueRecommendedItemComparator.getInstance())); B 
 
    Iterator<Vector.Element> recommendationVectorIterator =  
        recommendationVector.iterateNonZero(); 
    while (recommendationVectorIterator.hasNext()) { 
      Vector.Element element = recommendationVectorIterator.next(); 
      int index = element.index(); 
      if (topItems.size() < 10) { 
        long theItemID = indexItemIDMap.get(index); 
        topItems.add(new GenericRecommendedItem( 
          theItemID, (float) element.get())); 
      } else if (element.get() > topItems.peek().getValue()) { 
        long theItemID = indexItemIDMap.get(index); 
        topItems.add(new GenericRecommendedItem( 
          theItemID, (float) element.get())); 
        topItems.poll(); 
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      } 
    } 
 
    List<RecommendedItem> recommendations =  
      new ArrayList<RecommendedItem>(topItems.size()); 
    recommendations.addAll(topItems); 
    Collections.sort(recommendations,  
                     ByValueRecommendedItemComparator.getInstance()); C 
    output.collect(key, new RecommendedItemsWritable(recommendations)); 
  } 
} 

A Build the recommendation vector by summing 
B Find the top 10 highest values 
C Output recommendations in order 

 

The output ultimately exists as one or more files stored on an HDFS instance, as a compressed text 

file; the lines in the text file are of the form: 

 
3 [103:24.5,102:16.5,106:16.5] 

 

Each user ID is followed by a comma-delimited list of item IDs that have been recommended 

(followed by a colon and the corresponding entry in the recommendation vector, for what it is worth). 

This output can be retrieved from HDFS, parsed, and used in an application. Note that the output from 

Mahout will be compressed, to save space, using gzip. 

 

6.4 Running MapReduces with Hadoop 
Now we’re ready to try out this implementation on the Wikipedia links data set. Although Hadoop is a 

framework for running a computation across clusters of potentially thousands of machines, we will start 

by showing how to run a Hadoop computation on a cluster of one machine: yours. 

6.4.1 Setting up Hadoop 
As mentioned in the opening chapter, you will need to download a recent of copy of Hadoop from 

http://hadoop.apache.org/common/releases.html. Version 0.20.x is most recent and recommended at 

the time of this writing. Follow the setup directions at 

http://hadoop.apache.org/common/docs/current/quickstart.html and configure for what it calls “pseudo-

distributed” operation. Before running the Hadoop daemons with bin/start-all.sh, make one 

additional change: in conf/mapred-site.xml, add a new property named “mapred.child.java.opts” 

with value “-Xmx1024m”. This will enable Hadoop workers to use up to 1GB of heap memory. You can 

stop following the setup instructions after running all the Hadoop daemons. 

You are now running a complete Hadoop cluster on your local machine, including an instance of the 

HDFS distributed file system. We need to put the input onto HDFS to make it available to Hadoop. You 

may wonder why, if the data is readily available on the local file system, it needs to be copied again into 

HDFS. Recall that in general, Hadoop is a framework run across many machines, so, any data it uses 

needs to be available not to one machine but many. HDFS is an entity that can make data available to 

these many machines. Copy the input to HDFS with “bin/hadoop fs -put links-simple-
sorted.txt input/input.txt”.  
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Computing recommendations for every article in the data set would take a long time, because we are 

running on only one machine and incurring all the overhead of the distributed computing framework. We 

can ask the implementation in Mahout to compute recommendation for, say, just one user. Create a file 

containing only the number “3” on a single line. Save it as users.txt. This is a list of the articles for 

which we will generate recommendations -- here, one, for testing purposes. Place in into HDFS as well 

with “bin/hadoop fs -put users.txt input/users.txt”. 

6.4.2 Running recommendations with Hadoop 
The glue that binds together the various Mapper and Reducer components we’ve seen so far is 

org.apache.mahout.cf.taste.hadoop.item.RecommenderJob. It can be found within the 

Mahout source distribution. It configures and invokes the series of MapReduce jobs we have discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 The relation between RecommenderJob, the three MapReduces it invokes, and the data that they read to 
and write from HDFS 

In order to run it, and allow Hadoop to run these jobs, we need to compile all of this code into one 

.jar file along with all of the code it depends upon. This can be accomplished easily by running “mvn 
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clean package” from the core/ directory in the Mahout distribution. This will produce a file like 

target/mahout-core-0.x-SNAPSHOT.job, which is in reality a .jar file. 

Now, kick it all off with: 

 
bin/hadoop jar target/mahout-core-0.x-SNAPSHOT.job  
  org.apache.mahout.cf.taste.hadoop.item.RecommenderJob  
  -Dmapred.input.dir=input/input.txt  
  -Dmapred.output.dir=output --usersFile input/users.txt --booleanData 

 

Hadoop will take over and begin running the series of jobs. It will take many hours, because only 

one machine (yours) is being deployed to complete the computations. Even with a small army of 

machines, don’t expect results in minutes; the overhead of initializing the cluster, distributing the data 

and executable code, and marshalling the results, is non-trivial. If you are patient enough to let it 

complete, you should find the results on HDFS under the output/ directory. It will be contained in a 

single file called part-00000. 

 Copy the result back to your local file system with “bin/hadoop fs -get output/part-
00000”. This can be examined and used as desired. Congratulations, that’s it, you’ve produced 

recommendations with a fully distributed framework (on a cluster of one machine). Don’t forget to shut 

down Hadoop with “bin/stop-all.sh” when done. 

6.4.3 Configuring mappers and reducers 
One important point deserves mention here. Above, we let Hadoop default to running just one map 

and one reduce worker at once. This is appropriate since we’re running on just one machine. In general, 

when launching this job on a cluster of many machines, one worker is of course too little. On a real 

cluster, this can be controlled with command-line arguments like “-Dmapred.map.tasks=X -
Dmapred.reduce.tasks=Y”. Setting both equal to the total number of cores available in the cluster is 

a good place to start. For example, if your cluster has five quad-core machines, set both to 20. 

6.5 Pseudo-distributing a Recommender 
Earlier, we saw how to create, test and operate a variety of non-distributed recommender engines with 

Mahout, on one machine. In this chapter, we saw how to run one fully distributed recommender 

computation using a quite different approach. There is a middle ground, however, for applications that 

want to use multiple machines, but want to use an existing non-distributed implementation. 

 This might be the case for applications that have already developed a customized, effective 

implementation using the non-distributed framework. Such a Recommender implementation is likely, as 

with all the non-distributed implementations we’ve seen, intimately bound to a DataModel to do its 

work, and assumes efficient, random access to all available data. It might be hard or impossible to 

reinvent it in a fully distributed form. 

  For these situations, Mahout offers a “pseudo-distributed” recommender engine framework. It is 

merely a Hadoop-based harness that can run several independent, non-distributed instances of a given 

recommender engine in parallel. As such, it is an easy way to “port” a stock, non-distributed algorithm 

to use many machines. This facility does not actually parallelize the computation in any sense; it only 

manages operation of multiple non-distributed instances. Performance is the same as when running a 

non-distributed instance directly. However this allows you to run n instances of the recommender, on n 
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machines, each producing 1/n of all the recommendations required, in a total of 1/n the time it would 

take one machine to finish. 

 The disadvantage to this approach is a scalability limitation: a non-distributed computation remains 

limited in the amount of data it can handle by the resources of the machine(s) that it runs on. That is, a 

computation that can’t fit on one large machine still won’t fit when sent to n independent large 

machines. Pseudo-distributing the computation does not change this. 

6.5.1 Running a pseudo-distributed Recommender on Hadoop 
There are no new algorithms or code to introduce here; the pseudo-distributed recommender engine 

framework in Mahout runs the Recommenders we’ve already seen, but on Hadoop. Conceptually, it uses 

Hadoop to split the set of users across n machines, copy the input data to each, and then run one 

Recommender on each machine to process recommendations for a subset of users. 

The process is the same as before. With Hadoop set up and running, copy the preferences input file 

into HDFS. If you wish to try out this framework, choose the input from a data set we have studied 

already, such as ua.base from the GroupLens 100K data set. (The Wikipedia links data set will be too 

large to use with a non-distributed implementation.) Place ua.base into HDFS under, for example, 

input/ua.base. 

We will need to give the framework the name of a Recommender implementation that it can 

instantiate and use. The only requirement is that the implementation provides a constructor that takes a 

single argument, a DataModel. With this, the framework can do the rest. Typically, you would supply a 

customized Recommender that you had created for your application here; for testing purposes, 

SlopeOneRecommender will do because it can be instantiated with only a DataModel as configuration. 

Create mahout.jar as above. As it happens, this .jar file already contains 

SlopeOneRecommender, because it is a standard Mahout implementation. However, were you to use 

your own implementation, you would need to add it and any of its dependent classes into the .jar file as 

well. This can be accomplished with “jar uf mahout.jar -C [classes directory]”, where the 

classes directory is the location where your IDE or build tool output the compiled version of your code. 

Finally, run the job: 

 
bin/hadoop jar target/mahout-core-0.x-SNAPSHOT.job  
  org.apache.mahout.cf.taste.hadoop.pseudo.RecommenderJob  
  -Dmapred.input.dir=input/ua.base  
  -Dmapred.output.dir=output  
  --recommenderClassName  
  org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommender 

 

As before, you will find the output in HDFS in the output/ directory. That’s all there is to it; if your 

input is of such a scale that truly distributed algorithms are not required, then the pseudo-distributed 

recommender framework is a quick and easy way to utilize more computing power to produce 

recommendations faster. 

6.6 Looking beyond first steps with recommendations 
The portion of Mahout’s recommendation engine introduced in this chapter is, as we go to press, still 

quite under construction, so refer to the latest documentation and code in conjunction with this 

reference book. The techniques described above are also by no means the best or only way to distribute 
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a recommender computation; they are merely the first that the framework provides. Look to Mahout to 

provide more options as it evolves. On that note, we conclude with some thoughts about where to go 

next from here in your thinking and investigation of recommender engines. 

6.6.1 Running in the cloud 
Don’t have a hundred machines lying around on which to run these big distributed computations? 

Fortunately, today, service providers allow you to rent storage and computing time from a computing 

cloud. 

 

Figure 6.3 Amazon’s AWS Elastic MapReduce console 

Amazon’s Elastic MapReduce service (http://aws.amazon.com/elasticmapreduce/) is one such 

service. It uses Amazon’s S3 storage service instead of a pure HDFS instance for storing data in the 

cloud. After uploading your .jar file and data to S3, you can invoke a distributed computation using 

their AWS Console by supplying the same arguments we used to invoke the computation on the 

command line earlier.  

After logging in to the main AWS Console, select the Amazon Elastic MapReduce tab. Choose to 

“Create New Job Flow”. Give the new flow whatever name you like and specify “Run your own 

application”. Choose the “Custom jar” type and continue. Specify the location on S3 where the .jar file 

resides; this will be an s3: URI, not unlike “s3://my-bucket/target/mahout-core-0.x-
SNAPSHOT.job”. 

The job arguments will be the same as when running on the command line; here it will certainly be 

necessary to configure the number of mappers and reducers. The number of mappers and reducers can 

be tuned to your liking; as above, we recommend starting with a number equal to the number of virtual 

cores you reserve for the computation. While any instance type can be used, we recommend starting 

with the “regular” types unless there is reason to choose something else: small, large or extra-large. 

The number and type of instances is selected on the next AWS Console screen. 
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If your input data is extremely large, some recommender jobs such as that in 

org.apache.mahout.cf.taste.hadoop.item may need a more RAM per mapper or reducer. In 

this case you may have to choose a high-memory instance type. You may also opt for a high-CPU 

instance type; the risk is that the jobs will spend enough time reading and writing data to S3 that these 

instances’ speedy CPUs will go mostly unused. Therefore the conventional instance types are a good 

place to start. If using the “small” instance type, which has 1 virtual core per instance, then simply set 

the number of mappers and reducers equal to the number of instances you will select. 

You may leave other options untouched unless you have reason to set them. This is the essence of 

running a recommender job on Elastic MapReduce; refer to Amazon’s documentation for more 

information about how to monitor, stop, and debug such jobs. While Amazon AWS uses Hadoop version 

0.18.3 at the time of this writing, it should still be compatible with Mahout-related Hadoop code, even 

though Mahout is developed against version 0.20.x. 

6.6.2 Imagining unconventional uses of recommendations 
Although the Mahout recommender engine APIs are phrased in terms of “users” and “items”, the 

framework does not actually assume that users are people and items are objects like books and DVDs. 

We already applied recommender engines to a dating site’s data to recommend people to people for 

example. What other ways can recommender engines be applied? We provide some ideas to fire your 

imagination: 

 

 Recommend users to items: By simply swapping item IDs for user IDs, a recommender engine’s 

output instead suggests which users might be most interested in a given item. 

 Think broadly about “items”: given associations from users to places, times, usage patterns, or 
other people, you can recommend the same back to them.  

 Find most similar items. Item-based recommender implementations in Mahout make it easy to 
find a set of most similar items, which could be useful to present to users as well. 

 Think broadly about preference values. It’s unusual to be able to collect explicit preference values 

from users. Think about what you can infer from the data you do have about users’ relations to 
things. 

 Think about more than just one “user” and “item”: you can recommend to pairs of users by 

thinking of a pair of users as a “user”. You can recommend, say, an item and place by taking 
both of them together as an “item”. 

 

Mahout does not offer particular, special support for these use cases, though all can be implemented 

on top of Mahout. This is a possible direction in which Mahout could grow, or in which specialized third-

party projects might appear. In particular, the problem of inferring implicit ratings based on user 

behavior and other data is a fascinating and important problem in its own right, but not one that Mahout 

addresses. 
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6.7 Summary 
In this chapter, we took a brief look at the large data set based on Wikipedia article links. With 130M 

“preferences”, it is large enough to require a different, distributed approach to produce 

recommendations. 

We discussed the tradeoffs inherent in moving from one machine and a non-distributed algorithm to 

a large distributed computation on a cluster of machines. Then we briefly introduced the MapReduce 

paradigm and its implementation in Hadoop as a way to manage such distributed computations. 

We translated the item-based recommender algorithm we saw before into a different distributed 

implementation, which relies on matrix and vector operations to discover the best recommendations. 

We returned to the Wikipedia data set, prepared it for use with Hadoop, and walked through creating 

recommendations for this data set on a local Hadoop and HDFS instance. 

Finally, we examined pseudo-distributed recommender computations with Mahout: running several 

independent instances of non-distributed Recommender implementations on Hadoop. 

This concludes the coverage of recommender engines in Mahout. It has been intended as a gentle 

introduction to one aspect of machine learning, which gradually evolved from small input and non-

distributed computation to large-scale distributed computation. Now, we move to discuss clustering and 

classification with Mahout, which entails more complex machine learning theory and more intense use of 

distributed computing. With recommender engines under your belt, you’re ready to engage these topics. 

Read on. 
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7 
Introduction to Clustering 

This chapter covers: 

 A hands-on look at Clustering in action 

 Understanding the notion of similarity 

 Running a simple clustering example in Mahout 

 The various distance measures used for clustering 

Birds of a feather flock together. As human beings, we tend to associate with like-minded people. We 

have a great mental ability for finding repeating patterns, and we continually associate what we see, 

hear, smell or taste to things that are already in our memory. For example, the taste of honey reminds 

us more of the taste of sugar than salt. So we group together the things that taste like sugar and honey 

and call them “sweet”. Without even knowing what “sweet” tastes like, we know that all the sugary 

things in the world are similar and of the same group. However, we know how different they are from all 

the things belonging to the salty group. Unconsciously, we group together tastes into such “clusters”. 

So, in nature we have clusters of sugary things and salty things, with each group having hundreds of 

items in it.      

In nature, we observe many other types of groups. Consider apes versus monkeys, which are both 

kinds of primates. All monkeys share some traits like short height, long tail, and flat nose. On the other 

hand, apes are characterized by their large size, long arms, and bigger head. Apes look different from 

monkeys, but both are fond of bananas. So it is entirely up to us to think of apes and monkeys as two 

different groups, or as a single group of banana-loving primates. Therefore, what we consider as a 

cluster entirely depends on the traits we choose for measuring the similarity between items (in this 

case, primates). 

So what is the process of clustering all about? Suppose you were given the keys to a library 

containing thousands of books. However, in this library the books are arranged in no particular order. 

Readers entering your library would have to sweep through all the books one by one to find a particular 

one. Not only is this cumbersome, and slow, but tedious as well. 
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Sorting the books alphabetically by title would be a vast improvement -- for readers searching for a 

book by title, that is. What if most people were simply browsing, or researching a general subject? A 

grouping of the books by topics would more useful than an alphabetical ordering. 

How would you even begin this grouping? Having just taken over this job, you aren’t even sure what 

all the books are about -- surfing, romance, or even topics you haven’t encountered before? To group 

the books by topic, you could lay down all the books in a line and start reading them one by one. When 

you encounter a book whose content is similar to a previous book, you could go back and stack them 

together. At the end, you would have some hundreds of stacks of books instead of thousands. 

Good work -- this was your first clustering experiene. If a hundred topic groups were too large, you 

could go back to the beginning of the line and repeat the process with stacks until you got stacks that 

start looking quite different from one another. 

7.1 What is clustering? 
Clustering is all about organizing similar items into groups from a given collection of items. These 

clusters could be thought of as a set of items similar to each other in some ways but dissimilar from the 

items belonging to other clusters. Clustering a collection involves: 

 an algorithm, the method used to group the books together 

 a notion of both similarity and dissimilarity -- above we relied on your assessment of which books 
belonged in an existing stack and which should start a new one 

 a stopping condition. In the librarian example, this might have been the point beyond books can’t 
be stacked anymore, or when the stacks are already quite dissimilar.  

Until now we have thought of clustering items as stacking them. Really, we were just grouping them. 

Conceptually, clustering is more like looking at which items form “near” groups and just circling them. 

Take look at Figure 7.1. The figure shows clustering of points in a standard X-Y plane. Each circle 

represents one cluster, containing several points. In this simple example, this is obviously the best 

clustering of points into 3 clusters based on distance. Circles are good way to think of clusters, since 

clusters are also defined by a center point and radius. The center of the circle is called the centroid, or 

mean (average), of that cluster. It is the point whose coordinates are the average of the x and y 

coordinates of all points in the cluster. 

In later chapters, we will explore some of the methods that are popularly used for clustering data – 

and the way they are implemented in software in Mahout. The strategy in the librarian examples was to 

merge stacks of books until some threshold was reached. The number of clusters formed in this case 

depended on the data -- based on the number of books and threshold, we might have ended up with 

100, 20, or even just 1 cluster. A more popular strategy is to set a target number of clusters, instead of 

a threshold, and then find the best grouping with that constraint. Later we wille explain this and other 

variations in detail. 
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Figure 7.1 Points in an x-y plane. Circles represent the clusters. The points on the plane could be viewed as 3 logical 
groups. Clustering algorithms helps surface those groups to you.  

7.2 Measuring the similarity of Items 
The most important issue in clustering is finding a function that quantifies the similarity between any 

two data points as a number. Note that we are using the terms “item” and “point” interchangeably in 

this whole book. Both refer to a unit of data we wish to cluster. 

In the X-Y plane example, the measure of similarity (or “similarity metric”) for the points was the 

Euclidean distance between two points. The librarian example had no such clear, mathematical measure 

and instead relied entirely on the wisdom of the librarian to judge book similarity. That surely doesn’t 

work for us, since we need a metric that can be implemented on a computer. 

One possible metric could be based on the number of words common to two books’ titles. So “Harry 

Potter: The Philosopher’s Stone” and “Harry Potter: The Prisoner of Azkaban” have three words in 

common: “Harry”, “Potter” and “The”.  But, even though the book “The Lord of the Rings: The Two 

Towers” is similar to the Harry Potter series, this measure of similarity doesn’t capture that. We should 

alter the similarity measure to take account of the contents of the book itself. We could assemble word 

counts for each book, and when the counts are close for many words, judge the books similar. 

Unfortunately, that is easier said than done. Not only do these books have hundreds of pages of 

text, but this sort of measure is confounded by features of English. The most frequent words in these 

English-language texts are words like “a”, “an”, and “the” which invariably occur frequently in both 

books, but say little about the book similarity. 

To combat this effect, we could use numeric weights in the computation, and apply low weights to 

these words to reduce their effect on the similarity value. We should give less weight to words that 

occur across many books, and more weight to words that are found in few books. We should also weight 
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words occurring more often in a particular book because those words strongly suggest the content of 

the books – like “magic” in the case of Harry Potter 

Once we give a weight value to each word in a book, we can say the similarity between two books is 

the sum over all words of the similarity of those two words’ counts in the two books times their 

weighting. This is a decent measure, if the books are of equal length. What if one book is 300 pages 

long and the other 1000 pages long? Surely, the larger book will have a larger count of words, in 

general. We have to ensure that the weight of words should be relative to the length of the text. A 

popular method called Tf-Idf (term frequency - inverse document frequency) weighting does this quickly 

and effectively. We will cover Tf-Idf and others variations of it in detail in a later chapter. 

7.3 Hello World: Running a simple clustering example 
Mahout contains various implementations of clustering, like K-means, fuzzy K-means, and meanshift to 

name a few. In upcoming chapters we will review each of the clustering algorithms in Mahout and their 

real world applications. We will look at how to represent the data, run various algorithms, tune their 

parameters, and how to customize clustering to fit real world problems.  

7.3.1 Creating the input 
First, let us try a simple example, which clusters points in two dimensions like the one we saw in figure 

7.1. First, we need to input the points in a plane. 

We start by creating a list of points to cluster. Mahout clustering algorithms takes input in a 

particular binary format called SequenceFile, from Hadoop. The input encodes Vectors, each of which 

represents one point. We have three steps to input the data for Mahout clustering – firstly, you need to 

preprocess your data, then creates vectors from them, and finally save them in the SequenceFile format 

and input that to algorithm. In the case of points, no preprocessing is necessary as they are already 

vectors in the 2-dimensional plane. So we will need to convert them to a Vector class and save them as 

SequenceFile. We will give an overview of what SequenceFile can do but, a discourse into the details of 

the implementation and the format is beyond the scope of this book. For more details you can look at 

Hadoop in Action written by Chuck Lam or read the documentation from the hadoop website. 

Listing 7.1 Sample input to our first clustering example 
(1,1) 
(2,1) 
(1,2) 
(2,2) 
(3,3) 
(8,8) 
(8,9) 
(9,8) 
(9,9) 
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Examine the sample input given above. Figure 7.2 draws them on the X-Y plane. Two clusters stand 

out clearly; one cluster contains five points in the (1, 1), (3, 3) rectangular region, and other contains 

points in the (8, 8), (9, 9) rectangular region.  The first step is to convert this input to a Mahout-

readable format. 

Figure 7.2 Plot of the input points in the x-y plane 

We will need to represent these points as Vectors in Mahout. When you hear “vector” you may be 

recalling your high school physics course, where vectors were arrows and directions, not single points in 

space. For our purposes in machine learning, the term “vector” just refers to an ordered list of numbers, 

which is all a point or physics vector is anyway. Vectors have a number of dimensions (above, 2 

dimensions) and a numeric value for each dimension. 

Appendix A explains the Vector interface and its implementations in some detail; refer to it as 

needed to better understand how Mahout represents vectors. The details are not yet critical to our 

example, however. 

In listing 7.2, we show clustering of 2-dimensional points using Mahout. The function getPoints 

converts the given set of input points to RandomAccessSparseVector format. Once the vectors are 

generated, they are written in the SequenceFile format for the clustering algorithms in mahout to read. 

The function writePointsToFile shows how it is done.  

7.3.2 Using Mahout Clustering 
Once the input is ready, we can cluster those nine points. In this example, we use the k-means 

clustering algorithm. The k-means clustering algorithm takes the following input parameters: 

 The SequenceFile containing the input vectors.  

 The SequenceFile containing the initial cluster centers. In our case we have seeded 2 clusters, 
hence 2 centers. 
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 The similarity measure to be used. We are using EuclideanDistanceMeasure as the measure of 
similarity. We will be exploring other kinds of similarity measures later in this chapter. 

 The convergenceThreshold, if in a particular iteration, any centers of the clusters do not change 
beyond that threshold, then no further iterations are done. 

 The number of iterations to be done.   

 The number of reducers to be used. We will be using only 1. This is the value determining the 

parallelism of the execution. When we run this algorithm on a hadoop cluster, we will see how 
useful this parameter is. 

 The Vector implementation used in the input files. 

 

Figure 7.3 Marking the initial clusters is an important step in k-means clustering. 

We have everything we need except the initial set of cluster centers. Since we are trying to generate 

two clusters from the nine points, we have to add two points in the initial set of centers as shown in 

Figure 7.3. This set serves as the best guess of the cluster center for the K-means algorithm. Of course, 

we can observe that these guesses aren’t very good; both clearly fall within one of the apparent 

clusters. However in non-trivial examples there would be no way to know beforehand where the clusters 

like. There are various methods to estimate the centers of the clusters. Canopy clustering algorithm can 

do this estimation in a fast and efficient manner.  

Even if the estimated centers are way off, the K-means algorithm would re-adjust it at the end of 

each iteration by computing the average center or the centroid of all points in the cluster. To 

demonstrate this corrective nature of K-means, we shall start with center points taken close together at 

(1, 1) and (2, 1).  

 

 

Licensed to nancy chen <amigo4u2009@gmail.com>



115 
 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 

                   http://www.manning-sandbox.com/forum.jspa?forumID=623 
 

 

Listing 7.2 SimpleKMeansClustering.java 

  public static final double[][] points = { {1, 1}, {2, 1}, {1, 2}, 
      {2, 2}, {3, 3}, {8, 8}, {9, 8}, {8, 9}, {9, 9}}; 
   
  public static void writePointsToFile(List<Vector> points, 
      String fileName, FileSystem fs, Configuration conf) 
      throws IOException { 
    Path path = new Path(fileName); 
    SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, 
        path, LongWritable.class, VectorWritable.class); 
    long recNum = 0; 
    VectorWritable vec = new VectorWritable(); 
    for (Vector point : points) { 
      vec.set(point); 
      writer.append(new LongWritable(recNum++), vec); 
    } 
    writer.close(); 
  } 
   
  
  public static List<Vector> getPoints(double[][] raw) { 
    List<Vector> points = new ArrayList<Vector>(); 
    for (int i = 0; i < raw.length; i++) { 
      double[] fr = raw[i]; 
 
      Vector vec = new RandomAccessSparseVector("vector: "  
          + String.valueOf(i), fr.length); 
 
      vec.assign(fr); 
      points.add(vec); 
    } 
    return points; 
  } 
 
 
 
   
  public static void main(String args[]) throws Exception { 
     
    int k = 2;       #1 
     
    List<Vector> vectors = getPoints(points); 
     
    File testData = new File("testdata");   #2 
    if (!testData.exists()) { 
      testData.mkdir(); 
    }  
    testData = new File("testdata/points"); 
    if (!testData.exists()) { 
      testData.mkdir(); 
    } 
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    Configuration conf = new Configuration(); 
    FileSystem fs = FileSystem.get(conf); 
    writePointsToFile(vectors, "testdata/points/file1", fs, conf); 
     
     
    Path path = new Path("testdata/clusters/part-00000"); #3 
    SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, 
        path, Text.class, Cluster.class); 
     
    for (int i = 0; i < k; i++) { 
      Vector vec = vectors.get(i); 
 
      Cluster cluster = new Cluster(vec, i); 
      cluster.addPoint(cluster.getCenter()); 
      writer.append(new Text(cluster.getIdentifier()), cluster); 
    } 
    writer.close(); 
     
     
    KMeansDriver.runJob("testdata/points", "testdata/clusters", #4 
        "output", EuclideanDistanceMeasure.class.getName(), 0.001, 
        10, 1); 
     
    SequenceFile.Reader reader = new SequenceFile.Reader(fs, 
        new Path("output/points/part-00000"), conf); 
     
    Text key = new Text();     
    Text value = new Text(); 
    while (reader.next(key, value)) {     #5 
      System.out.println(key.toString() + " belongs to cluster " 
          + value.toString()); 
    } 
    reader.close(); 
  } 

#1 The number of clusters to be formed 
#2 Create the input directories for the data 
#3 Write the initial centers 
#4 Run the K-means algorithm 
#5 Read the output file and output the vector name and the cluster id it belongs to. 

 

To get a clear picture of what we did in the sample code, take a look at the flow in figure 7.4.  
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Figure 7.4 Flow of the hello world example for clustering.  

7.3.3 Analyzing the output 
Compile and run this code using your favorite IDE or from the command line. Make sure you add all the 

Mahout dependency JAR files to the classpath. See the section on Maven compilation for more idea on 

packaging of your code with mahout classes and its dependencies.   

Since our data is small, in about 5-10 seconds, you will get the following output 

 
vector: 0 belongs to cluster 0 
vector: 1 belongs to cluster 0 
vector: 2 belongs to cluster 0 
vector: 3 belongs to cluster 0 
vector: 4 belongs to cluster 0 
vector: 5 belongs to cluster 1 
vector: 6 belongs to cluster 1 
vector: 7 belongs to cluster 1 
vector: 8 belongs to cluster 1 

We had marked each vector with a string identifier to uniquely identify it. This mechanism allows 

users to attach a unique identifier to each unit of data. This helps to evaluate and reconstruct the 

clusters later. As you see in figure 7.5, the algorithm was able to readjust the center of the cluster 1 

from (2, 1) to (8.5, 8.5) – the centroid of all points in cluster 1. 

In this simple example, Mahout clustered the points into two sets quickly and with great precision. 

Real world data is not as simple. With millions of such input vectors, each having millions of dimensions, 

clustering becomes quite non-trivial. Quality and performance issues arise. It will be difficult to decide 

question like how many clusters to produce, or what kind similarity measure should to choose. Tuning 

performance and even evaluating the quality of the clusters will need attention. Getting the perfect 

clustering is a never-ending task. 

Licensed to nancy chen <amigo4u2009@gmail.com>



118 
 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 

                   http://www.manning-sandbox.com/forum.jspa?forumID=623 
 

Mahout clustering implementations are configurable enough to fit the needs of most any clustering 

problem -- the question is of course which configuration is best! We will go into detail about various 

parameters and the effect they have on clustering in the chapter Clustering Algorithms in Mahout. We 

will also examine some real world scenarios and show some techniques to improve both the clustering 

quality and performance.  

Figure 7.5 The output of our hello world k-means clustering program. Even with distant centers, K-means algorithm was 
able to correctly iterate and correct the center based on Euclidean distance measure. 

7.4 Exploring distance measures 
In the above example, we used EuclideanDistanceMeasure to calculate the distance between points. 

While it proved to be an effective measure in generating the clusters we wanted, there are other 

similarity measure implementations in the Mahout clustering package. Aptly named as DistanceMeasure 

implementations, these classes calculate the distance between two vectors according to some definition 

of “distance”. Shorter distances indicate more similarity between the vectors and vice-versa; similarity 

and distance are related concepts. 

7.4.1 Euclidean distance measure 
The Euclidean distance, which we’ve already seen, is the simplest of all distance measures. It is the 

most intuitive and matches our normal idea of “distance”. For example, given two points in a plane, the 

Euclidean distance measure could be calculated by using a ruler to measure the distance between them. 

Mathematically, Euclidean distance between two n-dimensional vectors (a1, a2, … , an) and B (b1, b2, 

… ,bn) is: 

 

d = √((a1-b1)2 + (a2-b2)2 + … + (an-bn)2) 

 

The Mahout class that implements this measure is EuclideanDistanceMeasure.  
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7.4.2 Squared Euclidean distance measure 
Just as the name suggests, this distance measure’s value is just the square of the value returned by 

the Euclidean distance measure. For n-dimentional vectors (a1, a2, … , an) and (b1, b2, … ,bn) the 

distance becomes: 

 

d = (a1-b1)2 + (a2-b2)2 + … + (an-bn)2 

 

The Mahout class that implements this measure is SquaredEuclideanDistanceMeasure. 

Figure 7.6 Difference between Euclidean and Manhattan distance measure. Euclidean distance measure gives 5.65 as 
the distance between (2, 2) and (6, 6) where as Manhattan distance is 8.0  

7.4.3 Manhattan distance measure 
Unlike Euclidean distance, under the Manhattan distance measure, the distance between any two points 

is the sum of the absolute differences of their coordinates. Figure 7.6 compares the Euclidean distance 

and Manhattan distance between two points in the X-Y plane. This distance measure takes its name 

from the grid-like layout of streets in Manhattan. As any New Yorker knows, you can’t walk from 2nd 

Avenue and 2nd Street to 6th Avenue and 6th Street by walking straight through buildlings. The real 

distance walked is 4 blocks up and 4 blocks over. Mathematically, Manhattan distance between two n-

dimentional vectors (a1, a2, … , an) and (b1, b2, … , bn) is: 

 

d = (a1-b1) + (a2-b2) + … + (an-bn) 

 

The Mahout class that implements this measure is ManhattanDistanceMeasure. 

7.4.4 Cosine distance measure 
The cosine distaince measure requires us to again think of points as like vectors from the origin to those 

points. These vectors form an angle between them, as illustrated in Figure 7.7. 
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Figure 7.7 Cosine angle between the vectors (2,3) and (4, 1)  as calculated from the origin 

When this angle is small, the vectors must be pointing in somewhat the same direction, and so in 

some sense the points are “close”. The cosine distance just computes the cosine of this angle, which is 

near 1 when the angle is small, and decreases as it gets larger. It subtracts the cosine value from 1 in 

order to give a proper distance, which is 0 when close and larger otherwise.  

 The formula for cosine distance between n-dimensional vectors (a1, a2, … , an) and (b1, b2, … ,bn) 

is: 

 

d = 1 - (a1b1 + a2b2 + … + anbn) / (√(a12 + a22 + … + an2)√(b12 + b22 + … + bn2)) 
 

Note, this doesn’t account for the length of the two vectors; all that matters are that the points are 

in the same direction from the origin. Also note that the cosine distance measure ranges from 0.0 (two 

vectors along the same direction) to 2.0 (two vectors along opposite directions). The Mahout class that 

implements this measure is CosineDistanceMeasure. 

7.4.5 Tanimoto distance measure 
Cosine distance measure disregards the lengths of both vectors. This may work well for some data sets, 

but it will lead to poor clustering in others where the relative lengths of the vectors contain valuable 

information. For example, consider three vectors A (1.0, 1.0), B (3.0, 3.0) and C (3.5, 3.5). Even 

though they point in the same direction, the cosine distance is 0.0 for any two of these vectors. Cosine 

distance does not capture the fact that B and C are in a sense closer. The Euclidean distance measure 

would reflect this, but it doesn’t take account of the angle between the vectors, the fact that they’re “in 

the same direction”. We might want, at times, a distance measure that reflects both. 
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Tanimoto distance measure, also known as Jaccard’s distance measure, captures the information 

about angle and the relative distance between the points. The formula for the Tanimoto distance 

between two n-dimentional vectors (a1, a2, … , an) and (b1, b2, … , bn) is: 

 

p = (a1b1 + a2b2 + … + anbn) 

d = 1 - p / (√(a12 + a22 + … + an2) + √(b12 + b22 + … + bn2) - p) 
 

7.4.6 Weighted distance measure 
Mahout also provides a WeightedDistanceMeasure class, and implementations of Euclidean and 

Manhattan distance measures using it. Weighted distance measure is an advanced feature in Mahout 

that allows you to give weights to different dimensions to either increase or decrease the effect of a 

dimension on the value of the distance measure. The weights in a WeightedDistanceMeasure need to be 

serialized to a file in a Vector format.  

For example, when calculating distance between points in the X-Y plane, suppose we wished to make 

the x coordinate twice as significant. We would do so by doubling all x values, conceptually. To do this 

with a weighted distance measure, we would construct a weight Vector with value 2.0 in the 0th index 

(for x) and 1.0 the 1st index (for y). This will affect distance measures differently, but will in general 

make the distance value more sensitive to difference in x value.  

7.5 Hello World Again! Trying out various distance measures 
We will run the hello world K-means clustering example using Euclidean, Manhattan, Cosine and 

Tanimoto distance measure, with k=2 (producing two clusters). The results of various runs are 

tabulated in Table 7.1  

The cosine distance measure clustering appears puzzling. From Figure 7.2, we see that only the point 

(2, 1) was at an angle greater than 45  from the x axis. The clustering algorithm chose to put all other 

points, at 45  and below, in one cluster. This doesn’t mean that cosine distance measure is bad, but 

only that it doesn’t work well on this data set. In domains such as text clustering, for instance, it can 

work well.  

SquaredEuclideanDistanceMeasure actually increased the number of iterations. This is because 

absolute distance values became larger when using that measure, and we ran our algorithm using the 

same small value for the convergenceThreshold. So, it took a couple of iterations more for the 

convergence to occur. 

 

 

Distance 
Measure 

Number of 
iterations 

Vectors9 Vectors in  
Cluster 1 

 in  
Cluster 0 

EuclideanDistanceMeasure 3 0, 1, 2, 3, 4 5, 6, 7, 8 

SquaredEuclideanDistanceMeasure 5 0, 1, 2, 3, 4 5, 6, 7, 8 

                                                   
 
9 These are the names/ids of the vectors as given in the Clustering Hello World source code 
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ManhattanDistanceMeasure 3 0, 1, 2, 3, 4 5, 6, 7, 8 

CosineDistanceMeasure 1 1 0, 2, 3, 4, 5, 6, 7, 8 

TanimotoDistanceMeasure 3 0, 1, 2, 3, 4 5, 6, 7, 8 

Table 7.1 Result of clustering using various distance measures 

In future chapters we will see more clustering methods and show how each of them is suited for 

various kinds of data, and optimize them using various distance measures for both speed and quality. 

7.5 Summary 
In this chapter, we introduced the idea of clustering. We used an intuitive approach to cluster books 

in a library. We formalized notions of clustering using points in two dimensions. We  created a simple 

set of points in the plane and ran a simple K-means clustering example using 

EuclideanDistanceMeasure.  

We then explained the various distance measures found in Mahout. Armed with these, we re-ran our 

example and compared the clusters generated using each of the distance measures.  

Before studying clustering algorithms in detail, we need to spend some time with another 

foundational concept in Mahout in the next chapter: Representating Data.  
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8 
Representing Data 

This chapter covers: 

 Representing data as a Vector  

 Converting text documents into Vector form  

 Normalizing data representations 

This chapter explores ways of converting different kinds of objects into Vectors. A Vector is a very 

simplified representation of data that can help clustering algorithms understand the object and help 

compute that similarity with another object. To get good clustering, we need to understand the 

techniques in vectorization: the process of representing objects as vectors. 

In the last chapter, we got a taste of clustering. Books were clustered together based on their 

similarity in words, and points in a two-dimensional plane were clustered together based on the distance 

between them. In reality, clustering could be applied to any kind of object provided we can distinguish 

similar and dissimilar items. Images could be clustered based on their colors, shapes in the image or 

both. We could cluster photographs to perhaps try to distinguish photos of animals from those of 

humans. We could even cluster species of animal by their average size, weight, number of legs and so 

on to discover groupings automatically. 

As humans, we can cluster these objects because we understand them, and ”just know” what is 

similar and what isn’t. Computers unfortunately have no such intuition. So the clustering of anything via 

algorithms starts with representing the object in a way that can be read by computers. 

It turns out that it is quite practical, and flexible, to think of objects in terms of their measurable 

features or attributes. For example, above, we identified size and weight as salient features that could 

help produce some notion of animal similarity. Each object (animal) has a numeric value for this feature. 

So, we want to describe objects as sets of values, each associated to one of a set of distinct 

features, or dimensions -- does this sound familiar? We’ve all but described a vector again. While we’re 

accustomed to thinking of vectors as arrows or points in space, they’re just ordered lists of values. As 

such, they can easily represent objects. 
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We’ve already talked about how to cluster vectors in the previous chapter. But, how do we represent 

vectors in Mahout? And how do we get from objects to vectors in the first place? That’s what we will see 

in the next section. 

8.1 Representing vectors 
You might have encountered the word “vector” in many contexts. In physics, a vector denotes the 

direction and magnitude of a force, or the velocity of a moving object like a car. In mathematics, a 

vector is simply a point in space. Both these concepts have the same representation. In two dimensions, 

any of these are represented as an ordered list of values, one for each dimension, like “(4, 3)”. Both 

representations are illustrated in Figure 8.1. We often name the first dimension “x” and the second “y” 

when dealing with two dimensions, but this won’t matter for our purposes in Mahout. As far as we’re 

concerned, a vector can have two, three or ten thousand dimensions. The first one is dimension 0, the 

next is dimension 1 and so on. 

Figure 8.1 In physics, the vector can be thought of ray with a start point, direction and length and represents quantities 
like velocity and acceleration. In geometry or space, the vector is just a point denoted by weights along each 
dimension. The direction and magnitude of the vector is by default assumed to be a ray from the origin (0,0). 

8.1.1 Understanding the difference between dense and sparse vectors 
Vectors, as we’ve described them so far, are just an ordered list of values indexed by their dimension: a 

number. So, you may already have imagined one natural way to represent a vector in a programming 

language like Java: an array of numbers (doubles). In such a representation, the vector’s value at 

dimension i would just be the value at array index i. This is a good way to represent a vector -- in some 

situations. We will call this a “dense” vector representation. 

What’s the alternative, then, to a “dense” vector representation? It is a “sparse” representation, but 

to understand the motivation for this alternative, we must point out a difference between the vectors 

you may be used to from physics and math, and those that are used to represent objects for 

classification. 

It is common for a vector, for our purposes, to have a large number of dimensions, and to have no 

value in several of these many dimensions. “No value” here is like the programming concept of “null”, 

but is represented as a zero value for a dimension in the vector. In physics or math, it’s unusual to 
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contemplate vectors with hundreds of dimensions, and, it’s also unusual to think of vectors with mostly 

zero values, but this is a common sight when vectors are used for classification. 

For such a vector, an array-based representation seems inefficient. The array would consist of 

mostly zeroes, with an occasional non-zero value. It would be more reasonable to only represent those 

dimensions with a non-zero value, not all of them. When dealing with vectors with millions of 

dimensions, with mostly zero values, the inefficiency of a dense representation becomes acute. 

Figure 8.2 A dense and sparse vector representation. A dense vector is a represented as a full array, so it needs to 
store only the double values. Sparse vector saves on the space occupied by the zero valued cells but has an integer 
sized overhead for every non-zero double value. 

Enter “sparse” vectors, which are backed by something more like a Java Map, mapping dimensions 

with a non-zero value to their values. While the memory required to store each dimension’s value is 

higher than with a dense, array-backed representation, such a representation is superior when the 

number of non-zero dimensions is relatively low. Figure 8.2 illustrates the differences between a dense 

and sparse vector. 

In Mahout, these ideas about vector representation are implemented as three different classes, each 

optimized for different scenarios. These Vector implementation classes are DenseVector, 

RandomAccessSparseVector, and SequentialAccessSparseVector.  

DenseVector is backed by an array of doubles. Such a representation is quite memory efficient 

when a vector has few non-zero values. It allows quick access to any dimension’s value, and quick 

iteration over all dimensions’ values in order. 

In RandomAccessSparseVector, the vector’s values are stored in HashMap-like structure, where 

keys are ints and values are doubles. Only dimensions with non-zero values are stored, which 

improves memory-efficiency when a vector has many non-zero dimensions. Accessing a dimension’s 

value is slightly slower as compared to a dense vector; iterating over dimensions in order is, however, 

much slower.  

Compare this with SequentialAccessSparseVector, where the vector is represented with 

parallel arrays of ints and doubles. Due to this, the iteration over the vector in order by dimension is 

fast. But, random lookups and insertion of values are slower than with RandomAccessSparseVector. 

These three implementations provide Mahout algorithms with an implementation whose performance 

characteristics suit the nature of the data, and way in which it is accessed. The choice of the 

implementation depends on the algorithm. If the algorithm does a lot of random insertions and updates 

of a vector’s values, then an implementation with fast random access like DenseVector or 
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RandomAccessSparseVector would be appropriate. On the other hand, for an algorithm like K-Means 

clustering which calculates the magnitude of the vectors repeatedly, the sequential-access 

implementation will perform faster than the random-access sparse vector. 

8.1.2 Transforming data into vectors 
To cluster objects, those objects first must be converted into vectors, or “vectorized”. The vectorization 

process is unique to each type of data. Since we are dealing with clustering in this section, we will talk 

about this data transformation with clustering in mind. We hope that by now the representation of an 

object as an n-dimensional vector of some kind is easy to accept. Objects must first be construed as a 

vector having as many dimensions as the number of its features. Let’s understand this more with an 

example. 

Say, we want to cluster a bunch of apples. They are of different shapes, different sizes, and different 

shades of red, yellow and green as shown in Figure 8.3. We define a distance measure, which says that 

two apples are similar if they differ in few features, and by a small amount. So a small, round, red apple 

is more similar to a small, round, green one than a large, ovoid green one. 

The process of vectorization starts with assigning features to a dimension. Let’s say weight is feature 

(dimension) 0, color is 1, and size is 2. So the vector of a small round red apple looks like [0 => 100 
gram, 1 => red, 2 => small]. But this “vector” doesn’t have all the numeric values yet, and it 

needs to.  

For dimension 0, we need to express weight as a number. This could simply be the measured weight 

in grams or kilograms. Size, the dimension 2 doesn’t necessarily mean the same as weight. For all we 

know, the green apple could be denser than the red apple due to the freshness. Density/volume could 

be used provided we have the instrument to measure the same. Size on the other hand could even be 

user perceived numbers. Small sized apple could be of size value 1, medium could be 2, and large 3.  
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Figure 8.1 Apples of different sizes and colors needs to be converted into an appropriate vector form. The trick is to 
figure out how the different features of the apples translate into a decimal value. 

What about color, the dimension 1? We could arbitrarily assign numbers to it, like red = 0.0, green = 

1.0, yellow = 2.0. This is a crude representation; it will work in many cases but fails to reflect the fact 

that yellow is a color between red and green in the visible spectrum. We could fix that by changing 

mappings, but perhaps better would be to use something like the wavelength of the color (400nm - 

650nm). This maps color to a meaningful and objective dimension value. Using these measures as 

properties of the apple, the vectors for some apples are described in table 8.1.  

Apple 
 

Weight (Kg) 
(0) 

Color 
(1) 

Size 
(2) 

Vector 
 

Small round green 0.11 510 1 [0.11, 510, 1] 

Large oval red 0.23 650 3 [0.23, 650, 3] 

Small Elongated red 0.09 630 1 [0.09, 630, 1] 

Large round yellow 0.25 590 3 [0.25, 590, 3] 

Medium oval green 0.18 520 2 [0.18, 510, 2] 

Table 8.1 Set of apples of different weight, sizes and colors converted to vectors 

If we weren’t interested in clustering apples based on similarity in color shades, we could have kept 

each color in different dimensions. That is, red would be dimension one, green the dimension three, and 

yellow in the fourth dimension. If the apple is red, then red will have value 1 and the others zero. So, 
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we could store these vectors in a sparse format and the distance measure would consider only the 

presence of non-zero value in these dimensions and cluster together those apples, which are of the 

same color. 

One possible problem with our chosen mappings to dimension values is that dimension 1’s values are 

much larger. If we applied a simple distance-based metric to determine similarity between these 

vectors, color differences would dominate the result. A relatively small color difference of 20nm is 

treated as equal to a huge size difference of 20cm. weighting the different dimensions solves this 

problem.  

The importance of weighting is discussed in Section 8.2 where we try to generate vectors from text 

documents. The words in the document do not represent the document object to the same extend. The 

weighting technique helps magnify the weights of more important words and shrinks the least important 

ones.  

Having established how to encode apples as vectors, we look at how in particular one prepares 

vectors for consumption by Mahout. An implementation of Vector is instantiated and filled in for each 

object; then, all Vectors are written to a file in the SequenceFile format, which is read by the 

Mahout algorithms. SequenceFile is a format from the Hadoop library, and encodes a series of key-

value pairs. Keys must implement WritableComparable from Hadoop and values must implement 

Writable. These are Hadoop’s equivalent of the Java’s own Comparable and Serializable 

interfaces. 

For our example, we will use the vector’s name or description as a key, and the vector itself as the 

value. Mahout’s Vector classes do not implement the Writable interface to avoid coupling them 

directly to Hadoop. However the VectorWritable wrapper class may be used to wrap a Vector and 

make it Writable. The Mahout Vector can be written to the SequenceFile using the 

VectorWritable class as shown in listing 8.1.   

Listing 8.1 ApplesToVectors.java 
public class ApplesToVectors { 
 public static void main(String args[]) throws Exception { 
    List<NamedVector> apples = new ArrayList<NamedVector>(); 
     
    NamedVector apple; 
    apple = new NamedVector(                    A 
        new DenseVector(new double[] {0.11, 510, 1}), 
        "Small round green apple"); 
    apples.add(apple); 
    apple = new NamedVector( 
      new DenseVector(new double[] {0.2, 650, 3}), 
        "Large oval red apple"); 
    apples.add(apple); 
    apple = new NamedVector( 
      new DenseVector(new double[] {0.09, 630, 1}), 
        "Small elongated red apple"); 
    apples.add(apple); 
    apple = new NamedVector( 
      new DenseVector(new double[] {0.25, 590, 3}), 
        "Large round yellow apple"); 
    apples.add(apple); 
    apple = new NamedVector( 
      new DenseVector(new double[] {0.18, 520, 2}), 
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        "Medium oval green apple"); 
    apples.add(apple); 
     
    Configuration conf = new Configuration(); 
    FileSystem fs = FileSystem.get(conf); 
     
    Path path = new Path("appledata/apples"); 
    SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, 
        path, Text.class, VectorWritable.class); 
    VectorWritable vec = new VectorWritable();          
    for (NamedVector vector : apples) { 
      vec.set(vector);                                      B 
      writer.append(new Text(vector.getName()), vec); 
    } 
    writer.close(); 
     
    SequenceFile.Reader reader = new SequenceFile.Reader(fs, 
        new Path("appledata/apples"), conf); 
     
    Text key = new Text(); 
    VectorWritable value = new VectorWritable(); 
    while (reader.next(key, value)) { 
      System.out.println(key.toString() + " " + value.get().asFormatString()); 
    } 
    reader.close(); 
  } 
} 

 

A Wrap the vector inside a NamedVector to assign a string name to it 
B VectorWritable class helps serialize the vector data into the SequenceFile 
 

Thus the process of selecting the features of an object and mapping them into a real number is 

known as feature selection. Since the basic data structure used in Mahout is vectors, the process of 

encoding features as a vector is named vectorization. Any kind of object can be converted to a vector 

form using reasonable approximations of the feature values, like it was done for apples. But now we 

turn to vectorizing one particularly interesting type of object: text documents. 

8.2 Representing text documents as vectors 
Text content in the digital form is exploding. The Google search engine alone indexes over 20 billion 

web documents. That’s just a fraction of the publicly crawl-able information. The estimated size of text 

data (both public and private) could go well beyond petabytes range: that’s a 1 followed by 15 zeros. 

There is a huge opportunity here for machine learning algorithms like clustering and classification to 

figure out structure and meaning in such an unstructured world and learning the art of text vectorization 

is the first step into it. 

“Vector space model (VSM)” is the term for the common way of vectorizing text documents. First, 

imagine the set of all words that could be encountered in a series of documents being vectorized. This 

set might be all words that appear at least once in any of the documents. Imagine each word is 

assigned a number, which is the dimension it will occupy in document vectors.  
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For example, if the word “horse” is assigned to the 39,905th index of the vector, then the word 

“horse” will correspond to the 39,905th dimension of document vectors. A document’s vectorized form 

merely consists, then, of the number of times each word occurs in the document, stored the vector as 

its value along that word’s dimension. The dimension of these document vectors can be very large. The 

maximum dimensions possible is called the cardinality of the vector. Since the counts of all possible 

words or tokens are unimaginably large, text vectors are usually assumed to have infinite dimensions. 

The value of the vector dimension for a word is usually the number of occurrence of the word in the 

document. This is known as term frequency weighting (TF). Note that values in a vector are also 

referred to as “weights” in this field; you may see references to “weighting” instead of values. The 

number of unique words that appear in one document is typically small compared to the number of 

unique words that appear in any document in a collection being processed. Hence, these high-dimension 

document vectors are quite sparse. 

In clustering, we frequently try to find the similarity between two documents based on a distance 

measure. In typical English-language documents, the most frequent words will be “a”,  “an”, “the”, 

“who”, “what”, “are”, “is”, “was” and so on. Such words are called stop-words. If we calculate the 

distance between two document vectors using any distance measure, we see that the distance value is 

dominated by the weights of these frequent words.  

This is the same problem we noted before with apples and color. This effect is undesirable because it 

implies that two documents are similar mostly because words like “a”, “an”, and “the” occur in both. 

But, intuitively, we think of two documents as similar if they talk about similar topics, and words that 

signal a topic are usually the rare words like “enzyme” or “legislation” or “jordan” etc. This makes 

simple term-frequency based weighting undesirable for clustering and for applications where document 

similarity is to be calculated. Fortunately, weighting can be modified with a very simple but effect trick 

to fix these shortcomings as seen in the following sub-section. 

8.2.1 Improving weighting with TF-IDF 
Term frequency - inverse document frequency (TF-IDF) weighting is a widely used improvement on 

simple term frequency weighting. The “IDF” part is the improvement; instead of simply using term 

frequency as values in the vector, this value is multiplied by the inverse of the term’s document 

frequency. That is, its value is reduced to the extent that the word occurs frequently across documents. 

 To illustrate this, say that a document has words w1, w2, ..., wn with frequency f1, f2, …, fn. The 

term frequency (TFi) of a word wi is the frequency fi.  

To calculate the inverse document frequency, first, the document frequency (DF) for each word is 

calculated. Document frequency is simply the number of documents the word occurs in. The number of 

times a word occurs in a document is not counted in document frequency. The inverse document 

frequency or IDFi for a word wi is: 

 

IDFi = 1 / DFi  

 

If a word occurs frequently in a collection of documents, its DF value is large and its IDF value is 

small. DF can be very large, and so the IDF value can be very small -- so small that it risks. In such 

cases its best to normalize the IDF score by multiplying it by a constant number. Usually we multiply it 

by the document count (N) and thus the IDF equation will look like: 
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IDFi = N / DFi  

 

Therefore the weight of a word in a document vector is: 

 

wi = TFi * IDFi = TFi * N / DFi 

 

The IDF value in the above form is still not ideal, as it masks the effect of TF on the final term 

weight. To reduce this problem, a usual practice is to use the logarithm of the IDF value instead: 

 

IDFi = log (N / DFi) 

 

Thus the TF-IDF weight for a word wi becomes: 

 

wi = TFi * log (N / DFi) 

 

That is, the document vector will have this value at the dimension for word i. This is the classic TF-

IDF weighting. Stop words get a small weight, and the terms that occur infrequently get a large weight. 

The “important” words or the topic words usually have a high TF and somewhat large IDF and so the 

product of the two becomes a larger value, thereby giving more importance to these words in the vector 

produced. 

The basic assumption of vector space model is that the words are dimensions and therefore are 

orthogonal to each other. In other words, VSM assumes that occurrence of words are independent of 

each other, in the same sense that a point’s x coordinate is entirely independent of its y coordinate, in 

two dimensions. We know this is wrong in many cases. For example the word “Cola” has higher 

probability of occurrence along with the word “Coco” and therefore these words are not truly 

independent. Other models try to consider word dependencies. One well-known technique is Latent 

Semantic Indexing (LSI). LSI detects dimensions that seem to go together and merges them into a 

single one. Due to the reduction in dimension, this speeds up clustering computations. It improves the 

quality of clustering, as there is now a single good feature for the document object that dominates 

grouping really well. At the time of writing, Mahout does not yet implement this feature.  However, TF-

IDF has proved to work remarkably well even with the independence assumption. Mahout currently 

provides a solution to the problem of word dependencies using a method called collocation or n-gram 

generation, which is described in the following sub-section. 

8.2.2 Accounting for word dependencies with n-gram collocations 
A group of words in a sequence is called an n-gram.  A single word can be called a unigram. Two words 

like “Coca Cola” can be considered a single unit and called a bigram. Three and more terms can be 

called trigrams, 4-grams, 5-grams and so on and so forth. Classic TF-IDF weighting assumes that the 

words occur independently of other words. The vectors created using this method usually lack the ability 

to identify key features of the document, which may be dependent.  

To circumvent this problem, Mahout implements techniques to identify groups of words that have an 

unusually high probability of occurring together, such as “Martin Luther King Jr” or “Coca Cola”. Instead 
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of creating vectors where dimensions map to single words (unigrams), we could as easily create vectors 

where dimensions map to bigrams -- or even both. TF-IDF can then work its magic as before. 

From a sentence of multiple words, we can generate all n-grams by selecting sequential blocks of n 

words. This exercise will generate many n-grams, most of which do not represent a meaningful unit. For 

example, from the sentence “It was the best of times it was the worst of times”, we can generate the 

following bigrams: 

“It was” 

“was the”  

“the best”  

“best of”  

“of times”  

“times it”  

“it was”  

“was the”  

“the worst”  

“worst of”  

“of times” 

Some of these are good features (“the best”, “the worst”) for generating document vectors, but 

some of them aren’t (“was the”). If we combine the unigrams and bigrams from a document and 

generate weights using TF-IDF, we will end up with large vectors with many meaningless bigrams 

having large weights on account of their large IDF. This is quite undesirable. Mahout solves this by 

passing the n-grams through something called a log-likelihood test, which can determine whether two 

words occurred together rather by chance, or because they form a significant unit. It selects the most 

significant ones and prunes away the least significant ones. Using the remaining n-grams, TF-IDF 

weighting scheme is applied and vectors are produced. In this way, significant bigrams like “Coca Cola” 

can be more properly accounted for in a TF-IDF weighting. 

In Mahout, text documents are converted to vectors using TF-IDF weighting and n-gram collocation 

using the DictionaryVectorizer class. In the next section we will show how starting from a 

directory full of documents one can create TF-IDF weighted vectors. 

8.3 Generating vectors from documents 
Now we examine two important tools that generate vectors from text documents. The first is the class 

SequenceFilesFromDirectory, which generates an intermediate document representation in 

SequenceFile format from text documents under a directory structure.  

The second, SparseVectorsFromSequenceFiles uses the text documents in the SequenceFile 

format to convert the documents to vectors using either TF or TF-IDF weighting with n-gram generation. 

The intermediate SequenceFile is keyed by document ID; the value is the document text content. So 

starting from a directory of text documents with each file containing a full document, we will show how 

to convert them to vectors. 

For the purpose of this example we will use the Reuters 21578 news collection10

                                                   
 
10 http://www.daviddlewis.com/resources/testcollections/reuters21578/ 

. It is a widely used 

dataset for machine learning research. The data was originally collected and labeled by Carnegie Group, 
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Inc. and Reuters, Ltd. in the course of developing the CONSTRUE text categorization system. The 

Reuters 21578 collection is distributed in 22 files, each of which contains 1000 documents, except the 

last (reut2-021.sgm) that contains 578 documents. 

The files are in SGML format, which is similar to XML. We could create a parser for the SGML files 

and write the document ID and document text into SequenceFiles, and use the vectorization tool 

above to convert them to vectors. However, a much quicker way is to re-use the Reuters parser given in 

the Lucene benchmark JAR file.  Since its bundled along with Mahout, all we need to do is change to the 

examples/ directory under Mahout and run the class 

org.apache.lucene.benchmark.utils.ExtractReuters. Before doing this, download the 

Reuters collection from the website11

 

 and extract it in the reuters/ folder under examples/. Run the 

Reuters extraction code from the examples directory as follows: 

mvn -e -q exec:java   
-Dexec.mainClass="org.apache.lucene.benchmark.utils.ExtractReuters"  
-Dexec.args="reuters/ reuters-extracted/" 
 

Using the extracted folder, run the SequenceFileFromDirectory class. We can use the launcher 

script from the mahout root directory to do the same: 
 
bin/mahout seqdirectory -c UTF-8  
-i examples/reuters-extracted/ -o reuters-seqfiles 
 

This will write Reuters articles in the SequenceFile format. Now the only step left is to convert this 

data to vectors. For that run the SparseVectorsFromSequenceFiles class using the Mahout 

launcher script: 

 
bin/mahout seq2sparse -i reuters-seqfiles/ -o reuters-vectors -w 

TIP 

In Mahout, the –w flag is used to denote whether or not to overwrite the output folder. Since Mahout 

deals with huge datasets, it takes time to generate the output for each algorithm. This flag will 

prevent accidental deletion of any output that took hours to produce.  

The seq2sparse command in the Mahout launcher script reads the Reuters data from SequenceFile 
and writes the vector generated by the dictionary based vectorizer to the output folder using the default 

options as given in Table 8.2. Inspect the folder produced using the command line: 

 
$ls reuters-vectors/ 
dictionary.file-0 
tfidf/ 
tokenized-documents/ 
vectors/ 
wordcount/ 
 

                                                   
 
11 http://www.daviddlewis.com/resources/testcollections/reuters21578/reuters21578.tar.gz 
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In the output folder we find a dictionary file and four directories. The dictionary file keeps the 

mapping between a term and its integer ID. This file is useful when reading the output of different 

algorithms, so we need to retain it. The other folders are intermediate folders generated during 

vectorization process, which happens in multiple steps, or MapReduce jobs.  

In the first step, the text documents are tokenized or in other words: split into individual words using 

the Lucene StandardAnalyzer and stored in the tokenized-documents/ folder. The word counting 

step, or the n-gram generation step (in this case only unigrams), iterates through the tokenized 

documents and generates a set of important words from the collection. The third step converts the 

tokenized documents into vectors using just the term-frequency weight, thus creating TF vectors. By 

default, the vectorizer uses the TF-IDF weighting, so two more steps happen after this: the document-

frequency (DF) counting job, and the TF-IDF vector creation. The TF-IDF weighted vectorized 

documents are found in the tfidf/vectors/ folder. For most applications, we need just this folder 

and the dictionary file.  

  

 

Option Flag Description Default Value 

Overwrite 
(bool) 

-w If set, the output folder is overwritten. If not set, 
the output folder is created if the folder doesn’t 
exist. If the output folder does exist, the job fails 
and an error is thrown. Default is unset. 

N/A 

Lucene 
Analyzer name 
(String) 

-a The class name of the analyzer to use org.apache.lucene.
analysis.standard.S
tandardAnalyzer 

Chunk size 
(int) 

-chunk The chunk size in megabytes. For large document 
collections (sizes in GBs and TBs) we will not be 
able to load the entire dictionary into memory 
during vectorization.  So we split theexport 
MAVEN_OPTS=-Xmx1024m dictionary into 
chunks of the specified size and perform 
vectorization in multiple stages. Its recommended 
to keep this size to 80% of the Java heap size of 
the Hadoop child nodes to prevent the vectorizer 
from hitting the heap limit 

100 

Weighting 
(String) 

-wt The weighting scheme to use. tf for term 
frequency based weighting and tfidf for TF-IDF 
based weighting  

tfidf 

Minimum 
support 
(int) 

-s The minimum frequency of the term in the entire 
collection so as to be considered as a part of the 
dictionary file. Terms with lesser frequency are 
ignored 

2 
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Minimum 
document 
frequency 
(int) 

-minDF The minimum number of documents the term 
should occur so as to be considered as a part of 
the dictionary file. Any term with lesser frequency 
is ignored 

1 

Max document 
frequency 
percentage 
(int) 

-x This is a mechanism to prune out high frequency 
terms or the stopwords. Any word that occurs in 
more than the specified percentage of documents 
out of the total number of documents in the 
collection is ignored from being a part of the 
dictionary 

99 

N-Gram size 
(int) 

-ng The max size of ngrams to be selected from the 
collection of documents.  

1 

Minimum Log 
Likelihood 
Ratio (LLR) 
(float) 

-ml This is a flag that works only when ngram size is 
greater than one. Very significant ngrams have 
large scores ~ 1000. Lesser significant ones have 
lower scores. While there is no specific method on 
how this value is chosen, the rule of thumb 
dictates that n-grams with LLR value < 1.0 are 
irrelevant. 

1.0 

Normalization 
(float) 

-n The normalization value to use in the Lp space. A 
detailed explanation of normalization is given in 
Section 8.4. Default scheme is not to normalize 
the weights 

0 

Number of 
reducers 
(int) 

-nr The number of reducer tasks to execute in 
parallel. This flag is useful when running 
dictionary vectorizer on a Hadoop cluster. Setting 
this to the maximum number of nodes in the 
cluster gives maximum performance. Setting this 
value higher than the number of cluster nodes 
lead to a slight decrease in performance.  For 
more explanation read Hadoop documentation on 
setting the optimium number of reducers 

1 

Create 
sequential 
access sparse 
vectors 
(bool) 

-seq If set, the output vectors are created as 
SequentialAccessSparseVectors. By 
default the dictionary vectorizer generates 
RandomAccessSparseVectors.  
The former gives higher performance on certain 
algorithms like k-means and SVD due to the 
sequential nature of vector operations. By default 
the flag is unset. 

N/A 
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Table 8.2 Flags of Mahout dictionary based vectorizer and their default values. To launch this run mahout laucher script 
as $MAHOUT_HOME/bin/mahout seq2sparse 

Table 8.2 details all the important flags used in the dictionary-based vectorizer. Let us revisit the 

Reuters SequenceFiles and generate a vector dataset using non-default values. We will use the 

following non-default flag values: 

 org.apache.lucene.analysis.WhitespaceAnalyzer to tokenize words based on the 
white-space characters between them. (-a) 

 -Chunk size of 200MB. This value won’t produce any effect on Reuters, as the dictionary sizes are 
usually in the range 1MB. (-chunk) 

 Weighting method as “tfidf”. (-wt) 

 Minimum support 5.(-s) 

 Minimum document frequency 3. (-minDF) 

 Maximum document frequency percentage of 90% to prune away high frequency words 
aggressively. (-x) 

 N-Gram size of 2 to generate both unigrams and bigrams. (-ng) 

 Minimum value of log-likelihood ratio (LLR) is 50 to keep only very significant bigrams. (-ml) 

 Normalization flag is unset (we will get back to this flag in the next section)  

 Create SequentialAccessSparseVectors flag set (-seq) 

Run the vectorizer using the above options in the Mahout launcher script 

 
bin/mahout seq2sparse -i reuters-seqfiles/ -o reuters-vectors-bigram -w  
-a org.apache.lucene.analysis.WhitespaceAnalyzer  
-chunk 200 -wt tfidf -s 5 -md 3 -x 90 -ng 2 -ml 50 –seq 
 

The dictionary file sizes from this vectorization job have increased from 654K to 1.2MB. Though we 

pruned away more unigrams based on frequency, we added almost double the amount of bigrams even 

after filtering using LLR threshold value. The dictionary size goes upto 2MB upon including trigrams. At 

least it has only grown linearly as we move from 2-grams to 3-grams and onwards; this is attributable 

to the LLR-based filtering process. Without this, the dictionary size would have grown exponentially. 

At this point, you would be almost ready to try any clustering algorithm Mahout has to offer. There is 

just one more concept in text vectorization that is important to understand: normalization, which we 

explore next.  

8.4 When normalization is needed 
Normalization, here, is a process of cleaning up edge cases, data with unusual characteristics that skew 

results disproportionally. For example, when calculating similarity between documents based on some 

distance measure, it’s not uncommon that some particular document shows up as quite similar to all the 

other documents. On closer inspection, we usually find that this happens because the document is large, 

and its vector has many non-zero dimensions, causing it to be “close” to many smaller documents. 

Somehow, we need to negate the effect of varying sizes of the vectors while calculating similarity. This 
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process of decreasing the magnitude of large vectors and increasing the magnitude of smaller vectors is 

called normalization.  

In Mahout, normalization uses what is known in statistics as a “p-norm”. For example, the p-norm of 

a 3-dimensional Vector [x, y, z] is: 

 

[x/(|x|p + |y|p + |z|p)1/p, y/(|x|p + |y|p + |z|p)1/p, z/(|x|p + |y|p + |z|p)1/p] 

 

The expression (|x|p + |y|p + |z|p)1/p is known as the norm of a vector; here, we have merely divided 

each dimension’s value by this number. The parameter p here could be any value greater than zero. The 

1-norm, or “Manhattan norm”, of a vector is the vector divided by the sum of the weights of all the 

dimensions: 

 

[x/(|x| + |y| + |z|), y/(|x| + |y| + |z|), z/(|x| + |y| + |z|)] 

 

The 2-norm, or “Euclidean norm” is the vector divided by the magnitude of the vector -- this magnitude 

is the “length” of the vector as we are accustomed to understanding it: 

 

[x/√(x2 + y2 + z2), y/√(x2 + y2 + z2), z/√(x2 + y2 + z2)] 

 

The infinite norm is simply the vector divided by the weight of the largest magnitude dimension: 

 

[x/max(|x|, |y|, |z|), y/max(|x|, |y|, |z|), z/max(|x|, |y|, |z|)] 

 

The norm power (p) to choose depends upon the type of operations done on the vector. If the distance 

measure used is Manhattan distance measure, the 1-norm will often yield better results with the data. 

Similarly, if the cosine of Euclidean distance measure is being used to calculate similarity, the 2-norm 

version of the vectors yields better results. That is to say, the normalization ought to relate to the 

notion of “distance” used in the similarity metric, for best results. 

 Note that the p in p-norm can be any rational number, so 3/4, 5/3, 7/5 are all valid powers of 

normalization. In the dictionary vectorizer the power is set using the –norm flag. A value “INF” means 

infinite norm. Generating the 2-normalized bigram vectors is as easy as running the Mahout launcher 

using the seq2sparse command with the –n flag set to 2: 

 
bin/mahout seq2sparse -i reuters-seqfiles/ -o reuters-normalized-bigram -w  
-a org.apache.lucene.analysis.WhitespaceAnalyzer  
-chunk 200 -wt tfidf -s 5 -md 3 -x 90 -ng 2 -ml 50 –seq –n 2 

 

Normalization improves the quality of clustering a little. Further refinement in the quality of 

clustering is achieved by the use to problem specific distance measures and appropriate algorithms. In 

the next chapter, we will take you on an elephant-ride past the various clustering algorithms in Mahout.  

8.5 Summary 
In this chapter we learned about the most important data representation scheme used by machine 

learning algorithms like clustering, the Vector format. There are two types of Vector implementations 
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in Mahout, sparse and dense vectors. Dense vectors are implemented by the DenseVector class; 

RandomAccessSparseVector is a sparse implementation designed for applications requiring fast 

random reads and the SequentialAccessSparseVector is designed for applications required fast 

sequential reads. 

We learned how to map important features of an object like an apple to numerical values and 

thereby create vectors representing different types of apples. The vectors were then written to and read 

form a SequenceFile, which is the format used by all the clustering algorithms in Mahout. 

Text documents are frequently used in context of clustering. We saw how text documents could be 

represented as Vectors using the Vector Space Model. The TF-IDF weighting scheme proved to be a 

simple and elegant way to remove the negative impact of stop words during clustering. The assumption 

of independence of words in the classic TF-IDF weighting scheme removes some important features 

from text, but the collocation based n-gram generation in Mahout solves this problem to a great extent 

by identifying significant groups of words using a log likelihood ratio test. We saw how the Mahout 

dictionary-based vectorizer converted the Reuters news collections to vector with ease.  

Finally we saw that the length of text documents negatively affects the quality of distance measures. 

The p-normalization method implemented in the dictionary vectorizer solves this problem by re-

adjusting the weights of the vector by dividing by the p-norm of the vector. 

Using the Reuters vector dataset, we can do clustering with different techniques, each having its 

pros and cons. We will explore these techniques in the next chapter on clustering algorithms. 
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9 
Clustering Algorithms in Mahout 

This chapter covers: 

 K-Means clustering 

 Centroid generation using Canopy clustering and K-Means++ 

 Fuzzy K-Means clustering, Dirichlet process clustering 

 Topic modeling using LDA as a variant of clustering 

Now that we know how input data is represented as Vectors and how SequenceFiles are created for 

input to the clustering algorithms, we are ready to explore the various clustering algorithms that Mahout 

provides. There are many clustering algorithms in Mahout, and some work well for a given dataset while 

others don’t. K-Means is a very generic clustering algorithm, which can be molded easily to fit almost all 

situations. It’s also simple to understand and can easily be executed on parallel computers.  

Therefore, before going into the details of various clustering algorithms, it’s best to get hands on 

experience using the K-Means algorithm. Then it becomes easier to understand the shortcomings and 

pitfalls and see how other techniques, though not so generic can help achieve better clustering of data. 

Simultaneously, we will use K-Means algorithm to cluster news articles and improve the quality using 

other techniques. Along the way, we will create a clustering pipeline for a news aggregation website to 

get a better feel of the real world problems in clustering. Finally, we will explore Latent Dirichlet 

Allocation (LDA) an algorithm, which closely resembles clustering, but achieves something far more 

interesting. There is a lot to cover, so let’s not waste any time and jump right into the world of 

clustering through the K-means algorithm. 

9.1 K-Means clustering 
K-Means is to clustering as Vicks is to cough syrup. It’s a simple algorithm and is more than 50 years 

old. Stuart Lloyd first proposed the standard algorithm in 1957 as a technique for pulse code 

modulation. However, it wasn't until 1982 before it got published12

                                                   
 
12 Original Paper: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.1338 

. It’s widely used as a clustering 
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algorithm in many fields of science. The algorithm requires the user to set the number of clusters k as 

the input parameter.  

9.1.1 Why only k? 
K-Means algorithm puts a hard limitation on the number of clusters, k. This limitation might put a 

doubtful question mark on the quality of this method. Fear not, as this algorithm has proven to work 

very well for a wide range of real world problems over the last 25+ years of its existence. Even if the 

estimate of the value k is sub-optimal, the clustering quality is not affected much by it.  

Say, we are clustering news articles to get top-level categories like politics, science and sports. For 

that we might want to choose a small value of k, which is in the range 10 – 20. If fine-grained topics are 

needed, a larger value of k like 50-100 is necessary. Say, there are one million news articles in our 

database and we are trying to find out groups of articles talking about the same story. The number of 

such related stories would be much smaller than the entire corpus maybe in the range of 100 articles 

per cluster. This means, we need a k value of 10000 to generate such a distribution. This will surely test 

the scalability of clustering and this is where Mahout shines at its best. 

For good quality clustering using K-Means, we will need to estimate the value of k. An approximate 

way of estimating k is to figure it out based on the data we have, and the size of clusters we need. In 

the case above, if there are around 500 news articles published about every story, we should be starting 

our clustering with a k value like 2,000.  

This is a crude way of estimating the number of clusters. Nevertheless, K-Means algorithm generates 

decent clustering even with this approximation. The type of distance measure used mainly determines 

the quality of K-Means clusters. In Chapter 7, we mentioned the various kinds of distance measures in 

Mahout. It’s worthwhile to revise them to understand how it affects examples in this chapter. 

9.1.2 All you need to know about K-Means 
Let look at K-Means algorithm in detail. Suppose we have n points, which we need to cluster into k 

groups. K-Means algorithm will start with an initial set of k centroid points. The algorithm does multiple 

rounds of the processing and refines this centroid location till the iteration max-limit criterion is reached 

or until the centroids converge to a fixed point from which it doesn’t move very much. A single K-Means 

iteration is illustrated clearly in Figure 9.1. The actual algorithm is a series of such iteration, till it 

encounters the criteria above.  

There are two steps in this algorithm. The first step finds the points, which are nearest to each 

centroid point and assigns them to that specific cluster. The second step recalculates the centroid point 

using the average of the coordinates of all the points in that cluster. Such a two-step algorithm is a 

classic case of what is known as EM Algorithm (Expectation Maximization)13. The algorithm is a two-step 

process, which is processed repeatedly until convergence is reached. The first step, known as the 

expectation (E) step finds the expected points associated with a cluster. The second step known as the 

maximization (M) step improves the estimation of cluster center using the knowledge from the E step. A 

complete discourse on expectation maximization is beyond the scope of this book, but plenty of 

explanations and resources on EM are found online14

                                                   
 
13 http://en.wikipedia.org/wiki/Expectation-maximization_algorithm 

.  

14 http://www.cc.gatech.edu/~dellaert/em-paper.pdf, Gives an easier explanation on EM Algorithm in terms of lower bound 
maximization. 
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Figure 9.1 K-Means clustering in action. Starting with 3 random points as centroids (top-left), the Map stage (top-right) 
assigns each point to the cluster nearest to it. In the reduce stage (bottom-left), the associated points are averaged out 
to produce the new location of the centroid, leaving us with the final configuration (bottom-right). After each iteration, 
the final configuration is fed back in to the same loop till the centroids converge. 

Now that we have understood K-Means technique, let’s meet the important K-Means related classes 

in Mahout and run a simple clustering example. 

9.1.3 Running K-Means clustering 
The K-Means clustering algorithm is run using either the KMeansClusterer or the KMeansDriver 

class. The former one does an in-memory clustering of the points while the latter is an entry point to 

launch K-Means as a Map/Reduce job. Both methods can be run like a regular Java program and can 

read and write data from the disk. They can also be executed on a Hadoop cluster reading and writing 

data to a distributed file system.  

For this example, we are going to use a random point generator function to create the points. It 

generates the points in the Vector format as a normal distribution around a given center. The points are 

scattered around in a natural manner. These points are going to be clustered using the in-memory K-

Means clustering implementation in Mahout. 
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The generateSamples function in the listing 9.1 below takes a center say (1,1), the standard 

deviation (2), and creates a set of n (400) random points around the center, which behaves like a 

normal distribution.  Similarly we will create two other sets with centers (1, 0) and (0, 2) and 

standard deviation 0.5 and 0.1 respectively. In listing 9.1, we ran the KMeansClusterer using the 

following parameters: 

 The input points are in the List<Vector> format 

 The DistanceMeasure is EuclideanDistanceMeasure 

 The threshold of convergence is 0.01 

 The number of clusters k is 3 

 The clusters were chosen using a RandomSeedGenerator as in the hello-world example of 
Chapter 7 

9.1 In-memory clustering example using the K-Means algorithm 
private static void generateSamples(List<Vector> vectors, int num, 
  double mx, double my, double sd) { 
     for (int i = 0; i < num; i++) { 
       sampleData.add(new DenseVector( 
         new double[] { 
           UncommonDistributions.rNorm(mx, sd), 
           UncommonDistributions.rNorm(my, sd) 
         } 
       )); 
     } 
   }  
public static void KMeansExample() { 
  List<Vector> sampleData = new ArrayList<Vector>(); 
 
  generateSamples(sampleData, 400, 1, 1, 3);                  #1 
  generateSamples(sampleData, 300, 1, 0, 0.5); 
  generateSamples(sampleData, 300, 0, 2, 0.1); 
 
  List<Vector> randomPoints = RandomSeedGenerator.chooseRandomPoints( 
    points, k); 
     List<Cluster> clusters = new ArrayList<Cluster>(); 
 
     int clusterId = 0; 
     for (Vector v : randomPoints) { 
       clusters.add(new Cluster(v, clusterId++)); 
     } 
     
     List<List<Cluster>> finalClusters = KMeansClusterer.clusterPoints( 
       points, clusters, new EuclideanDistanceMeasure(), 3, 0.01); #2 
     for(Cluster cluster : finalClusters.get(finalClusters.size() - 1)) { 
    System.out.println("Cluster id: " + cluster.getId() + " center: " 
                          + cluster.getCenter().asFormatString());   #3   
     } 
   } 

Cueball 

#1 Generate 3 sets of points each with a different center and standard deviation 
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#2 Run KMeansClusterer using the CosineDistanceMeasure 

#3 Read the center of the cluster and print it. 

Figure 9.2 K-Means Clustering. We start with k as 3 and try to cluster 3 normal distributions we have generated. The 
thin lines denote the clusters estimated in previous iterations, here we can clearly see the clusters shifting 

The DisplayKMeans class kept in the “examples” folder of the Mahout code is a great tool to 

visualize the algorithm in a 2-dimensional plane. It shows how the clusters shift their position after each 

iteration. It is also a great example of how clustering is done using KMeansClusterer. Just run the 

DisplayKMeans as a Java Swing application and view the output of the example as given in Figure 

9.2. 

Note that the K-Means in-memory clustering implementation works with list of Vector objects. The 

amount of memory used by this program depends on the total size of all the vectors. The sizes of 

clusters are larger as compared to the size of the vectors in the case of sparse vectors or the same size 

for dense vectors. As a rule of thumb, assume that number of vectors that could be fit in memory 

equals the number of data points + k centers. If the data is huge, we cannot run this implementation.  

This is where Map/Reduce shines. Using Map/Reduce infrastructure, we can split this clustering 

algorithm to run on multiple machines, with each Mapper getting a subset of the points and nearest 

cluster computed in a streaming fashion.  

The Map/Reduce version is designed to run on a Hadoop cluster. Nevertheless, it runs quite 

efficiently without it. Mahout is compiled against Hadoop code; that means, we could run the same 

implementation without a Hadoop cluster directly from within Java or from the command line.  

UNDERSTANDING THE K-MEANS CLUSTERING MAP/REDUCE JOB 
In Mahout, the Map/Reduce version of K-Means algorithm is instantiated using the KMeansDriver 

class. The class has just a single entry point - the runJob method. We have already seen K-Means in 

action in Chapter 7. The K-Means clustering algorithm takes the following input parameters: 

 The SequenceFile containing the input Vectors 
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 The SequenceFile containing the initial Cluster centers 

 The similarity measure to be used. We will use EuclideanDistanceMeasure as the measure 
of similarity and experiment with the others later 

 The convergenceThreshold, if in an iteration, each centroid does not move a distance more 
than this value, no further iterations are done and clustering stops 

 The number of iterations to be done. This is a hard limit; the clustering stops if this threshold is 
reached 

 The number of reducers to be used. This value determines the parallelism in the execution of the 

job. One a single machine a value of 1 is set. When we run this algorithm on a Hadoop cluster, 
we will show how useful a parameter this is 

Mahout algorithms never modify the input directory. This gives us the flexibility to experiment with the 

various parameters of the algorithm. From a Java code, we can call the entry point as given in listing 

9.2 to initiate clustering of data from the file-system. 

Listing 9.2 The K-Means clustering job entry point 
KMeansDriver.runJob(inputVectorFilesDirPath, clusterCenterFilesDirPath,  
     outputDir, EuclideanDistanceMeasure.class.getName(), 
     convergenceThreshold, numIterations, numReducers); 
 

TIP 

Mahout reads and writes data using the Hadoop FileSystem class. This provides seamless access to 

both the local file system (via java.io) and the distributed file systems like HDFS, S3FS (using internal 

Hadoop classes). This way the same code that works on the local system, will also work on the 

Hadoop file system on the cluster, provided the path to the Hadoop configuration files are correctly 

set in the environment variables. In Mahout, the shell script, bin/mahout finds the Hadoop 

configuration files automatically from the environment variable $HADOOP_CONF 

We will use the SparseVectorsFromSequenceFile tool to vectorize documents stored in 

SequenceFile to vectors. Refer to the vectorization section 8.3 to know more about this tool. Since K-

Means algorithm needs the user to input the k initial centroids, the Map/Reduce version needs us to 

input the path on the file system where these k centroids are kept. To generate the centroid file, we can 

write a custom logic to select the centroids as we did in the hello world example in listing 7.2 or let 

Mahout generate the random k centroids for us as detailed next. 

RUNNING K-MEANS JOB USING RANDOM SEED GENERATOR  
Let’s run K-Means clustering over the vectors generated from the Reuters-21578 news collection as 

described in section 8.3. The collection was converted to a Vector dataset and weighted using Tf-Idf 

measure. Reuters’ collection has many topic categories. Therefore, we will set k as 20 and try to see 

how K-Means can cluster the broad topics in the collection. For running K-Means clustering, our 

mandatory checklist includes: 

 The Reuters dataset in the Vector format 

 The RandomSeedGenerator that will seed the initial centroids 
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 The SquaredEuclideanDistanceMeasure 

 A large value of convergenceThreshold (1.0), since we are using the squared value of the 
Euclidean distance measure 

 The maxIterations set as 10 

 The number of reducer set as 1 

 The number of clusters k set as 20 

If we use the DictionaryVectorizer to convert text into vectors with more than one reducer, 

the dataset of vectors in SequenceFile format are usually found split into multiple chunks. 

KMeansDriver reads all the files from the input directory assuming they are SequenceFiles. So, 

don’t bother about the split chunks of vectors.  

The same is true for the folder having the initial centroids. The centroids may be written in multiple 

SequenceFile files and Mahout takes care of reading through all of them. This feature is particularly 

useful when having an online clustering system where data is inserted in real time. Instead of 

appending to the already existing file, a new chunk can be created independently and written into, 

without affecting the algorithm.  

CAUTION 

KMeansDriver accepts an initial cluster centroid folder as a parameter. It expects a SequenceFile 

full of centroids only if the –k parameter is not set. If the parameter is specified, the driver class will 

erase the folder and write randomly selected k points to a SequenceFile there.  

KMeansDriver is also the main entry point to launch the K-Means clustering of Reuters-21578 

news collection. From the Mahout examples directory execute the Mahout launcher from the shell with 

“kmeans” as the program name. This driver class will randomly select k cluster centroids using 

RandomSeedGenerator and then run the K-Means clustering algorithm: 

 
$ bin/mahout kmeans -i reuters-vectors -c reuters-initial-clusters  \ 
-o reuters-kmeans-clusters \ 
-m org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure \ 
-r 1 -d 1.0 -k 20 
 

We are using maven Java execution plug-in to execute K-Means clustering with the required 

command line arguments. The argument –k 20 is set implies that the centroids are randomly 

generated using RandomSeedGenerator and written to the input clusters folder. 

TIP 

We can see the complete details of the command line flags and the usage of any Mahout package by 

setting the –h or --help command line flag. 

In the command-line, the number of reducers –r 1 parameter or the distance measure 

SquaredEuclideanDistanceMeasure need not be mentioned as they are set by default. Once the 

command is executed, clustering iterations will run one by one. Be patient and wait for the centroids to 
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converge. An inspection of Hadoop counters printed at the end of a Map/Reduce can tell how many of 

the centroids have converged as specified by the threshold: 

… 

… 
INFO: Counters: 14 
May 5, 2010 2:52:35 AM org.apache.hadoop.mapred.Counters log 
INFO:   Clustering 
May 5, 2010 2:52:35 AM org.apache.hadoop.mapred.Counters log 
INFO:     Converged Clusters=6 
May 5, 2010 2:52:35 AM org.apache.hadoop.mapred.Counters log 
… 
… 

It takes a couple of minutes to run clustering over the Reuters data with the above parameters. Had 

the clustering been done in-memory, it would have finished in under a minute. The same algorithm over 

the same data as Map/Reduce job takes a couple of minutes. This increase in timing is caused by the 

overhead of the Hadoop library. The library takes does many checks before starting any map or reduce 

task. However, once it starts, Hadoop mappers and reducers run at full speed. This overhead slows 

down the performance on a single system. On a cluster, the negative effect of this starting delay is 

negated by the reduction in processing time due to the parallelism.   

Lets get back to the console where K-Means is running. After multiple Map/Reduce jobs, the K-Means 

clusters converge and clustering end and the points and cluster mappings are written to the output 

folder. 

TIP 

When we deal with terabytes of data that can’t be fit in memory, the Map/Reduce version is able to 

scale to the size by keeping the data on the Hadoop distributed file system and running the algorithm 

on large clusters. So, if the data is small, and fits in the RAM, use the in-memory implementation. If 

the data grows and reaches a point where it can’t fit it into the memory anymore, we will have to 

start using the Map/Reduce version and think of moving the computation to a Hadoop cluster. Check 

out the appendix C to find out more on setting up a Hadoop cluster on a Linux box.  

 The K-Means clustering implementation creates two types of directories in the output folder.  The 

clusters directory “clusters-” is formed at the end of each iteration, which has the information about 

the clusters like centroid, standard deviation and other things. The clusteredPoints directory, on the 

other hand has the final mapping from cluster-id to document-id. This data is generated as per the 

cluster information from the output of the last Map/Reduce operation. The directory listing of the output 

folder looks something like this: 

 
$ ls –l reuters-kmeans-clusters 
drwxr-xr-x  4 user  5000  136 Feb 1 18:56 clusters-0 
drwxr-xr-x  4 user  5000  136 Feb 1 18:56 clusters-1 
drwxr-xr-x  4 user  5000  136 Feb 1 18:56 clusters-2 
… 
drwxr-xr-x  4 user  5000  136 Feb 1 18:59 clusteredPoints 
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The clusters-0 folder is generated after the first iteration, the clusters-1 folder after the 

second iteration and so on. Now that the clustering is done, we need a way to inspect the clusters and 

see how they are formed. Mahout has a utility called the 

org.apache.mahout.utils.clustering.ClusterDumper that can read the output of any 

clustering algorithm and show the top terms in each cluster and the documents belonging to that 

cluster. To execute cluster dumper run the following: 

 
$ bin/mahout clusterdump -dt sequencefile \ 
-d reuters-vectors/dictionary.file-* \ 
-s  reuters-kmeans-clusters/clusters-19 -b 0 
 

The Cluster dumper takes dictionary file as the input. This is used to convert the feature ids or 

dimensions of the Vector into words. Running ClusterDumper on the output folder corresponding to 

the last iteration produces an output similar to the one given below.  

 
Id: 11736: 
 Top Terms: debt, banks, brazil, bank, billion, he, payments, billion dlrs, 
interest, foreign 
Id: 11235: 
 Top Terms: amorphous, magnetic, metals, allied signal, 19.39, corrosion, allied, 
molecular, mode, electronic components 
… 
Id: 20073: 
 Top Terms: ibm, computers, computer, att, personal, pc, operating system, intel, 
machines, dos 

 

The reason why it is different for different runs is that a random seed generator was used to select 

the k centroids. The output depends heavily on the selection of these centers. Inspecting the output 

above, the cluster with id 11736 has top words like bank, brazil, billion, debt etc. Most of the articles 

that belong to this cluster talk about news associated with these words. Note that the cluster with id 

20073 talks about computers, ibm, att, pc etc. The news articles associated with that cluster evidently 

talks about computers and related companies. 

Thus, we have achieved a decent clustering using a distance measure like 

SquaredEuclideanDistanceMeasure. However, it took us 15+ iterations to get there. What’s 

peculiar about text data is that two documents that are similar in content don’t necessarily need to have 

the same length. The Euclidean distance between two similar document of different sizes and about the 

same topic is quite large. That is, the Euclidean distance is affected more by the difference in the 

number of words between the two documents, and less by the words common to both of them. Visit the 

Euclidean distance equation from section 7.4.1 and try to understand its behavior by experimenting with 

it. 

The reasons stated above makes Euclidean distance measurement a misfit for text documents. Take 

look at a cluster in the Cluster dumper output. This shows a cluster that was created because of the 

Euclidean distance metric: 

 
Id: 20978: 
 Top Terms: said, he, have, market, would, analysts, he said, from, 
which, has 

Licensed to nancy chen <amigo4u2009@gmail.com>



148 
 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 

                   http://www.manning-sandbox.com/forum.jspa?forumID=623 
 

 

This cluster really doesn’t make any sense, especially with words like “said”, “he” or “the”. To really 

get good clustering for a given dataset, we have to experiment with the different distance measures 

available in Mahout as given in section 7.4 and see how it performs on the data we have 

We now know that Cosine and Tanimoto measures work well for text documents since they depend 

more on the common words and less by the un-common words. The only way to evaluate that is to try 

it on our Reuters dataset and see. Let’s run K-Means with CosineDistanceMeasure: 
 
$ bin/mahout kmeans -i reuters-vectors -c reuters-initial-clusters  \ 
-o reuters-kmeans-clusters \ 
-m org.apache.mahout.common.distance.CosineDistanceMeasure \ 
-r 1 -d 0.1 -k 20 
 

Note that convergence threshold was set to 0.1, instead of the default value of 0.5 as cosine 

distances lie in between 0 and 1. When the program runs, one peculiar behavior is noticeable: the 

clustering speed slowed down a bit due to the extra calculation involved when using cosine distance, but 

the whole clustering converges within a few iterations as compared to 15+ used by squared Euclidean 

distance measure. This clearly indicates that cosine distance gives a better notion of similarity between 

text documents than Euclidean distance. Once clustering finishes, run the ClusterDumper against the 

output and inspect some of the top words in each cluster. Some of the interesting clusters are shown 

below: 

 
Id: 3475:name: 
 Top Terms: iranian, iran, iraq, iraqi, news agency, agency, news, gulf, war, 
offensive 
Id: 20861:name: 
 Top Terms: crude, barrel, oil, postings, crude oil, 50 cts, effective, raises, 
bbl, cts 
 

Experiment with Mahout K-Means and find out the combination of DistanceMeasure and 

convergenceThreshold that gives the best clustering for the given problem. Try them on various 

kinds of data and see how things behave. Explore the various distance measures in Mahout or try and 

make one on your own. Though K-Means runs impeccably well using randomly seeded clusters, the final 

centroid locations still depend on their initial positions.  

K-Means algorithm is an optimization technique. Given the initial conditions, K-Means tries to put the 

centers at their optimal position. But it is a greedy optimization, which causes it to find the local 

minima. There can be other centroids positions that satisfy the convergence property and some of them 

might be better than the result we just got. Though, we may never find the perfect clusters, we can 

apply two powerful techniques that will takes us closer to it. They are called Canopy clustering and K-

Means++ and they are discussed in the following section. 

9.1.4 Finding the perfect k using approximate clustering 
For many real-world clustering problems, the number of clusters is not known beforehand, like the 

grouping of books in the library example from Chapter 7. A class of techniques known as approximate 

clustering algorithms can estimate the number of clusters as well as the approximate location of the 

centroids from a given dataset. Two notable methods that do this are Canopy generation and K-

Means++ algorithm. 

Licensed to nancy chen <amigo4u2009@gmail.com>



149 
 

©Manning Publications Co. Please post comments or corrections to the Author Online forum: 

                   http://www.manning-sandbox.com/forum.jspa?forumID=623 
 

An algorithm that finds the number of clusters! Exciting? Well, hold on! They don’t just magically run 

and find the solution for the clustering problem. They still have to be told what size clusters to look for 

and they will find the number of clusters that have such a size approximately.  

REASON FOR HAVING A PERFECT SET OF K CENTROIDS 
K-Means algorithm in Mahout generates the SequenceFile containing the k vectors using the 

RandomSeedGenerator class as we saw earlier. While random centroid generation is fast, there is no 

guarantee that it will generate good estimates for centroids of the k clusters.  Centroid estimation 

affects the run time of K-Means a lot. Good estimates help the algorithm to converge faster and use less 

number of passes over the data. We will see two techniques to select k as well as the centroid vectors 

for K-Means – Canopy generation and K-Means++ 

9.1.5 Seeding K-Means centroids using Canopy generation 
Canopy generation also known as Canopy clustering is a fast approximate clustering technique. It’s used 

to divide the input set of points into overlapping clusters known as canopies. The word “canopy” by 

definition is an enclosure. For us it is nothing but an enclosure of points or just a cluster. Canopy 

clustering tries to estimate the approximate cluster centroids or the canopy centroids using two distance 

thresholds T1 and T2, with T1>T2.  

Canopy clustering strength lies in its ability to create clusters very very fast. It can do this with a 

single pass over the data. But its strength is also its weakness. This algorithm may not give accurate 

and precise clusters. But, it can give the optimal number of clusters without even specifying the number 

of clusters k like in K-Means.  

The algorithm uses a fast distance measure and two distance thresholds T1 and T2, with T1>T2. It 

begins with a dataset of points and an empty list of canopies. It just iterates over the dataset, creating 

canopies in the process. During each iteration, it removes a point from the dataset and adds a canopy 

into the list with that point as the center. It loops through the rest of the points one by one. With each 

one, it calculates the distances to all the canopy centers in the list. If the distance of the point to any 

canopy center is within T1, it is added into that canopy. If the distance is within T2, it is removed from 

the list and thereby prevented from forming a new canopy in the subsequent loops. We repeat this 

process until the list is empty.  

We prevent all points close to an already existing canopy (distance < T2) from being the center of a 

new canopy. We really don’t want the formation of another redundant canopy in close proximity. Figure 

9.3 illustrates the canopies created using this method. The clusters formed depends only on the choice 

of distance thresholds. 

UNDERSTANDING CANOPY GENERATION ALGORITHM 
The canopy generation algorithm is executed using the CanopyClusterer or the CanopyDriver 

class. The former one does an in-memory clustering of the points while the latter is an implementation 

of it as Map/Reduce jobs. These jobs can be run like a regular Java program and can read and write 

data from the disk. They can also be run on a Hadoop cluster reading and writing data to a distributed 

file system.  
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Figure 9.3 Canopy Clustering. If we start with a point (top left) and mark it as part of a canopy, then all the points within 
a distance T2 (top right) are removed from the dataset and prevented from becoming a new canopy. The points within 
outer circle (bottom-right) are also put in the same canopy but they are allowed to be part of other canopies. This 
assigning process is done in a single pass on a Mapper. The Reducer computes average of the centroid (bottom right) 
and merges close canopies. 

We are going to use the same random point generator function as earlier to create vectors in 

scattered in the 2-dimensional plane like in a normal distribution. In listing 9.3, we ran the in-memory 

version of Canopy using the CanopyClusterer with the following parameters: 

 The input Vector data in the List<Vector> format 

 The DistanceMeasure is EuclideanDistanceMeasure 

 The value of T1 is 3.0 

 The value of T2 is 1.5 
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9.3 In-memory example of Canopy generation algorithm 
public static void CanopyExample() { 
  List<Vector> sampleData = new ArrayList<Vector>(); 
 
  generateSamples(sampleData, 400, 1, 1, 2);                  #1 
  generateSamples(sampleData, 300, 1, 0, 0.5); 
  generateSamples(sampleData, 300, 0, 2, 0.1); 
 
   
  List<Canopy> canopies = CanopyClusterer.createCanopies( 
    points, new EuclideanDistanceMeasure(), 3.0, 1.5); 
 
     for(Canopy canopy : canopies) { 
    System.out.println("Canopy id: " + canopy.getId() + " center: " 
                          + canopy.getCenter().asFormatString());   #3   
     } 
   } 

 

#1 Generate 3 sets of points with different parameters 
#2 Run CanopyClusterer using the EuclideanDistanceMeasure 
#3 Read the center of the canopy and print it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.4 An example of in-memory Canopy Generation visualized using the DisplayCanopy class. We start with 
T1=3.0 and T2=1.5 and try to cluster the 3 normal distributions that are synthetically generated. 

The DisplayCanopy class in the “examples” folder of the Mahout code displays a set of points in a 

2-dimensional plane and shows how the canopy generation is done using in-memory 

CanopyClusterer. A typical output of the DisplayCanopy is given in the figure 9.4 on the next 

page. 

Canopy clustering is non parametric with respect to the number of cluster centroids. The number of 

centroids formed depends only on the choice of distance measure, T1 and T2. The Canopy in-memory 
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clustering implementation works with list of Vector objects just like the K-Means implementation. If 

the dataset is huge, we can never run this algorithm on a single machine and would have to rely on the 

Map/Reduce job. The Map/Reduce version of canopy clustering implementation does a slight 

approximation as compared to the in-memory one and thus produces a slightly different set of canopies 

for the same input data. This is nothing to be alarmed about when the data is huge. The output canopy 

clustering is a great starting point for K-Means, which improves clustering due to the increased precision 

of the initial centroids as compared to random selection. 

Using the canopies we generated above, we can assign points to the nearest canopy center, thus in 

theory cluster the set of points. This is called canopy clustering instead of canopy generation. In 

Mahout, the CanopyDriver class does both canopy centroid generation and an optional clustering if 

the runClustering parameter is set to true. Next, we will try and run Canopy generation on the 

Reuters collection and figure out the value of k. 

RUNNING CANOPY GENERATION ALGORITHM TO SELECT K CENTROIDS 
We are going to generate Canopy centroids from the Reuters Vector dataset. For the centroid 

generation, we will use the distance measure as EuclideanDistanceMeasure and the threshold 

values t1=2000 and t2=1500. Remember that Euclidean distance measure gives very large distance 

values for sparse document vectors so large values for t1 and t2 are necessary to get meaningful 

clusters.  

The distance threshold values t1 and t2 that we chose above produces less than 50 centroid points 

for the Reuters collection. We estimated these threshold values after running the CanopyDriver 

multiple times over the input data. Due to the fast nature of canopy clustering, we are at liberty to 

experiment with various parameters and are able to see the results much quicker than we would have 

had if we were using expensive techniques like K-Means. To run canopy generation over Reuters; 

execute the canopy program using the Mahout launcher as follows: 

 
$bin/mahout canopy -i reuters-vectors -o reuters-canopy-centroids \ 
-m org.apache.mahout.common.distance.EuclideanDistanceMeasure \ 
-t1 1500 -t2 2000 
 

Within a minute CanopyDriver will generate the centroids in the output folder. We can inspect the 

Canopy centroids using the cluster dumper utility as we did for K-Means earlier in this chapter. Next, we 

will use this set of centroids to improve K-Means clustering. 

IMPROVING K-MEANS CLUSTERING USING CANOPY CENTERS 
We are ready to run the K-Means clustering algorithm using the canopy centroids we just generated. For 

that, all we need to do is to set the clusters parameter (-c) to this folder and remove the –k command 

line parameter in the KMeansDriver. Remember that, if –k flag is set, the RandomSeedGenerator 

will overwrite the canopy centroid folder. We will be using the TanimotoDistanceMeasure in K-

Means to get clusters as follows: 

 
$bin/mahout kmeans -i reuters-vectors -o reuters-kmeans-clusters \ 
-m org.apache.mahout.common.distance.TanimotoDistanceMeasure  \ 
-c reuters-canopy-centroids -d 0.1 –w 
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After the clustering is done, use the ClusterDumper to inspect the clusters. Some of them are 

listed below: 

 
Id: 21523:name: 
 Top Terms:  
tones, wheat, grain, said, usda, corn, us, sugar, export, agriculture         
Id: 21409:name: 
 Top Terms:  
stock, share, shares, shareholders, dividend, said, its, common, board, company 
Id: 21155:name: 
 Top Terms:  
oil, effective, crude, raises, prices, barrel, price, cts, said, dlrs 
Id: 19658:name: 
 Top Terms: 
drug, said, aids, inc, company, its, patent, test, products, food  
Id: 21323:name: 
 Top Terms:  
  7-apr-1987, 11, 10, 12, 07, 09, 15, 16, 02, 17 

Note the last cluster shown above. While the others seem to be great topic groups, the last one 

looks meaningless. However, the clustering would have grouped these as occur together. Another issue 

is that words like “its”, “said” etc that occur in these clusters are also useless from a language 

standpoint. The algorithm simply doesn’t know that. Therefore, any clustering algorithm can generate 

good clustering provided the highest weighted features of the vector represent good features of the 

document.  

In sections 8.3 and 8.4, we saw how Tf-Idf and normalization gave higher weights to the important 

features and lower weight to the stop words, but from time to time such spurious clusters do surface. A 

quick and effective way to solve such a problem is to remove these words from ever occurring as 

features in the document Vector. In the case study in section 9.1.5, we will show how we fix this using 

a custom Lucene Analyzer class.  

Canopy clustering is a good approximate clustering technique. However, it suffers from memory 

problem. If the distance thresholds are close, too many canopies get generated. This increases RAM 

usage in the Mapper and hence might hit out of memory error while running on a large dataset with a 

bad set of thresholds. K-Means++ solves the problem in a more elegant manner as we see next. 

 

9.1.6 K-Means++: Clustering reloaded  
TODO 

We are going to put all the learning we did till now to create a clustering module for a news website. We 

choose a news website as it best represents a dynamic system where content needs to be organized 

and with very good precision. Clustering can help solve the issues related to such content systems. 

9.1.7 Case study: Clustering news articles using K-Means 
In this case study we are going to assume that we are in charge of a fictional news aggregation 

website called “AllMyNews.com”. A person who comes to the website tries to search using keywords to 

find the content they are looking for. If they see an interesting article, they have to use the words in the 

article to search for related articles, or they drill down to the news category and explore news articles 

there. Usually we rely on human editors to find related items and help categorize and cross-link the 
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whole website. If articles are coming in at tens of thousands per day, human intervention might prove 

too expensive. Enter clustering. Using clustering, we may be able to find related stories automatically 

and thus be able to give the user a better browsing experience. 

Figure 9.5 An example of related-articles functionality taken from the Google News website. The links to similar stories 
within the cluster are shown at the bottom in bold. The top related articles are shown as links above that. 

To minimize the human intervention we are going to use K-Means clustering to implement such a 

feature. Look at figure 9.5 for an example of what the feature would look like in practice. For news story 

on the website, we will show to the user, the list of all related news articles.  

Lets see how clustering solves this problem. For any given article, we can store the cluster in which 

the articles reside. When a user requests for articles related to the one he is reading, we will pick out all 

the articles in the cluster and sort them based on the distance to the given article and present it to the 

user. Though this is a great starting design for a news-clustering system. It just doesn’t solve all issues 

completely. Lets list down some real life problems one might face in such a dynamics: 

 There are articles coming in every minute and the website needs to refresh its clusters and 
indexes. 

 There might be multiple stories breaking out at the same time so we would require separate 
clusters for them, thus we need to add more centroids incrementally every time this happens. 

 The quality of the text content is questionable as there are multiple sources feeding in the data. 
So, we need to have mechanisms to cleanup the content when doing feature selection. 

We start with an efficient K-Means clustering implementation to cluster news articles offline. Here 

the word “offline” means we will write the documents into SequenceFiles and start the clustering as a 

backend process. In the coming chapters, we will modify this case study add various advanced 

techniques using Mahout and help solve issues related to speed and quality.   

Finally at the end of the clustering section, we will show a working, tuned and scalable clustering 

framework for a live website like “AllMyNews.com” that can be adapted for different applications. We will 

not go into details of how storage of news data is done. We will assume for simplicity document storage 

and retrieval blocks can’t be replaced easily by database read/write code. The listing 9.4 shows the code 

that clusters news articles from SequenceFiles and listing 9.5 shows a custom Lucene Analyzer 

class, which prunes away non-alphabetic features from the data. 

9.4 News clustering using Canopy generation and K-Means Clustering 
public class NewsKMeansClustering { 
  public static void main(String args[]) throws Exception { 
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    int minSupport = 2; 
    int minDf = 5; 
    int maxDFPercent = 80; 
    int maxNGramSize = 2; 
    int minLLRValue = 50; 
    int reduceTasks = 1; 
    int chunkSize = 200; 
    int norm = 2; 
    boolean sequentialAccessOutput = true; 
 
    String inputDir = "inputDir"; 
    File inputDirFile = new File(inputDir); 
    if (!inputDirFile.exists()) { 
      inputDirFile.mkdir(); 
    } 
    Configuration conf = new Configuration(); 
    FileSystem fs = FileSystem.get(conf); 
 
    SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, 
        new Path(inputDir, "documents.seq"), Text.class, Text.class); 
 
    for (Document d : Database) {                       #1       
      writer.append(new Text(d.getID()), new Text(d.contents())); 
    } 
 
    writer.close(); 
    String outputDir = "newsClusters"; 
    HadoopUtil.overwriteOutput(outputDir); 
 
    String tokenizedPath = outputDir +  
        DocumentProcessor.TOKENIZED_DOCUMENT_OUTPUT_FOLDER; 
    MyAnalyzer analyzer = new MyAnalyzer();             #2 
    DocumentProcessor.tokenizeDocuments(inputDir, analyzer.getClass() 
        .asSubclass(Analyzer.class), tokenizedPath);    #3 
 
    DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath, 
      outputDir, minSupport, maxNGramSize, minLLRValue, reduceTasks, 
      chunkSize, sequentialAccessOutput); 
    TFIDFConverter.processTfIdf( 
      outputDir + DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER, 
      outputDir + TFIDFConverter.TFIDF_OUTPUT_FOLDER, chunkSize, minDf, 
      maxDFPercent, norm, sequentialAccessOutput);       #4 
 
    String vectorsFolder = outputDir + TFIDFConverter.TFIDF_OUTPUT_FOLDER 
                           + "/vectors"; 
    String canopyCentroids = outputDir + "/canopy-centroids"; 
    String clusterOutput = outputDir + "/clusters"; 
 
    CanopyDriver.runJob(vectorsFolder, canopyCentroids,  #5 
      ManhattanDistanceMeasure.class.getName(), 2000, 1800); 
    KMeansDriver.runJob(vectorsFolder, canopyCentroids, clusterOutput, 
      TanimotoDistanceMeasure.class.getName(), 0.01, 10, 1);   #6 
     
 
 
    SequenceFile.Reader reader = new SequenceFile.Reader(fs, new Path( 
      clusterOutput + "/points/part-00000"), conf);             
     
    Text key = new Text(); 
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    Text value = new Text();                     
    while (reader.next(key, value)) {                          #7 
      System.out.println(key.toString() + " belongs to cluster " 
                         + value.toString()); 
      // Write code here to save the cluster mapping to the database 
    } 
    reader.close(); 
  } 
} 

 

#1 Replace with the code that fetches data from a DB/File 
#2 Add a custom Lucene Analyzer - MyAnalyzer  
#3 Tokenize document for the DictionaryVectorizer 
#4 Calculate Tf-Idf vectors from the tokenized documents using bigrams 
#5 Run canopy centroid generation job to get cluster centroids 
#6 Run K-Means algorithm to cluster the documents 
#7 Read the mapping table of Vector to Cluster and save them 
 

9.5 A custom Lucene Analyzer that filters non alphabetic tokens 
public class MyAnalyzer extends Analyzer { 
   
  private final CharArraySet stopSet; 
  private final Pattern alphabets = Pattern.compile("[a-z]+"); 
   
  public MyAnalyzer() { 
    stopSet = (CharArraySet) StopFilter.makeStopSet(StopAnalyzer.ENGLISH_STOP_WORDS); 
  } 
   
  public MyAnalyzer(CharArraySet stopSet) { 
    this.stopSet = stopSet; 
  } 
   
  @Override 
  public TokenStream tokenStream(String fieldName, Reader reader) { 
    TokenStream result = new StandardTokenizer(Version.LUCENE_CURRENT, reader); 
    result = new StandardFilter(result);  
    result = new LowerCaseFilter(result);                   
    result = new StopFilter(true, result, stopSet);       #1 
     
    TermAttribute termAtt = (TermAttribute) result.addAttribute(TermAttribute.class); 
    StringBuilder buf = new StringBuilder(); 
    try { 
      while (result.incrementToken()) { 
        if (termAtt.termLength() < 3) continue;          #2 
        String word = new String(termAtt.termBuffer(), 0, termAtt.termLength()); 
        Matcher m = alphabets.matcher(word); 
         
        if (m.matches()) {                              #3 
          buf.append(word).append(" "); 
        } 
      } 
    } catch (IOException e) { 
      e.printStackTrace(); 
    } 
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    return new WhiteSpaceTokenizer(new StringReader(buf.toString())); 
  } 
} 

 

#1 Use couple of Lucene filters  
#2 Remove word having a length of three characters or less 
#3 Consider only words made of alphabets 
 

The NewsKMeansClustering example is straightforward. The documents are fetched and written 

to the input directory. From these, we create vectors from unigrams and bigrams that contain only 

alphabets. Using the generated Vectors as input, we run the Canopy centroid generation job to create 

the seed set of centroids for K-Means clustering algorithm. Finally, at the end of K-Means clustering, we 

read the output and save it to the database. The next section looks at the other algorithms in Mahout 

that takes us further than K-Means. 

9.2 Beyond K-Means: An overview of clustering techniques 
K-Means produces very rigid clustering, for example a news article, which talks about influence of 

politics in biotechnology, could be clustered either along with the politics document or with the 

biotechnology document but not with both. Since we are trying to tune the related articles feature, we 

might also need the overlapping or fuzzy information. We also might need to model the point 

distribution of our data. This is not something K-Means was designed to do. K-Means is just one type of 

clustering. There are many other clustering algorithms is designed on different principle, which we will 

see next. 

9.2.1 Different kinds of clustering problems 
Recall that clustering is simply a process of putting things into groups. To do more than just this 

simple grouping, we need to first understand the different kinds of problems in clustering. These 

problems and their solutions fall mainly into four categories as follows: 

Figure 9.6 Exclusive clustering v/s Overlapping clustering with two centers. In the former, squares and triangles have 
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their own cluster and each one belong only to one cluster. While in overlapping clustering, some shapes like pentagon 
can belong to both the clusters with some probability so they are part of both clusters, instead of having a cluster of 
their own. 

EXCLUSIVE CLUSTERING 
In exclusive clustering, an item belongs exclusively to one cluster, not several. Recall the librarian 

example in Chapter 7, where we associated a book like Harry Potter to the cluster containing books of 

the fiction genre. There, Harry Potter exclusively belonged to the fiction cluster. K-Means as we saw 

does this exclusive clustering. So if the clustering problem demands this behavior, K-Means will usually 

do the trick.  

OVERLAPPING CLUSTERING 
What If we wanted to do non-exclusive clustering: that is, put Harry Potter not only in fiction but 

also in a “young adult” cluster as well as under “fantasy”. An overlapping clustering algorithm like Fuzzy 

K-Means achieves this easily. Moreover, Fuzzy K-Means also tells the degree with which an object is 

associated with a cluster. So Harry potter might be inclined more towards the “fantasy” cluster than the 

“young adult” cluster.  The difference between exclusive and overlapping clustering is illustrated in 

figure 9.6.  

HIERARCHICAL CLUSTERING 
Now, assume a situation where we have two clusters of books, one on “fantasy” and the other on 

“space travel”. Harry Potter is in the cluster of fantasy books. However, these two clusters, “space 

travel” and “fantasy”, could be visualized as sub-clusters of “fiction”. Hence, we can construct the 

“fiction” cluster by merging these and other similar clusters. “fiction” and “fantasy” has a parent child 

hierarchy, and hence the name Hierarchical clustering. 

Similarly, we could keep grouping clusters into bigger and bigger ones. At a certain point, the 

clusters would be so large and so generic that they’d be useless as groupings. Nevertheless, this is a 

useful method of clustering: merging small clusters until it becomes undesirable to do so. Methods that 

uncover such a systematic tree-like hierarchy from a given data collection are called Hierarchical-

clustering algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

9.7 Hierarchical clustering. A bigger cluster groups two or more smaller clusters in the form of a tree like hierarchy. 
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Recall the librarian example in chapter 7. We did a crude form of hierarchical clustering when we simply stacked books 
based the similarity we felt when we read them. 

PROBABILISTIC CLUSTERING 
A probabilistic model is usually a distribution of a set of points in the n-dimensional plane, and 

usually they have a characteristic shape. There are certain probabilistic models that fit known data 

patterns. Therefore, such clustering algorithms try to fit a probabilistic model over a dataset and try to 

adjust the model parameter to correctly fit the data. Mostly such correct fit never happens. Instead, 

these algorithms give a percentage match or a probability value, which tells how much a fit the model is 

to the cluster. 

 

 

 

 

 

 

 

 

 

 

 

9.8 A simplified view of probabilistic clustering. The initial set of points (left). On the right: the first set of points matches 
an elongated elliptical model where as the second one is more symmetric.  

To explain how this fitting happens, let’s look at a 2-d example in Figure 9.8. Say, we somehow 

know that all points in a plane are distributed in various regions with an elliptical shape. However, we 

don’t know the center and radius or axes of these regions. We will choose an elliptical model and try to 

fit it to the data. We will move, stretch or contract each ellipse to best fit a region. We will do this for all 

the regions. This is called model-based clustering. A typical example of this type is the Dirichlet Process 

clustering algorithm, which does fitting based on a model provided by the user. We will see this 

clustering algorithm in action in section 9.4 of this chapter. Before we get there, we need to understand 

how different clustering algorithms are grouped based on their strategy. 

9.2.1 Different clustering approaches 
Different algorithms in clustering take different approaches. We can look at these approaches in a 

categorical manner as follows:  

 Fixed number of centers 

 Bottom-up approach 

 Top-down approach 
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There are many other clustering algorithms that have other unique ways of clustering. You may never 

encounter them in Mahout, as at the time of writing they are not scalable on large datasets. Instead, we 

will explore the different algorithms based on the above three approaches, next. 

FIXED NUMBER OF CENTERS 
These methods fix the number of clusters ahead of time. The count of clusters is typically denoted by 

the letter k, which originated from the k of the K-Means algorithm. The idea is to start with k and to 

modify these k cluster centers to better fit the data. Once converged, the points in the dataset are 

assigned to the centroid closest to it. 

Fuzzy K-Means is another example of an algorithm, which requires a fixed number of clusters. Unlike 

K-Means, which does exclusive clustering, Fuzzy K-Means does overlapping clustering.  

Figure 9.9 Bottom up clustering approach. After every iteration, the clusters are merged to produce larger and larger 
clusters till it is infeasible to merge based on the given distance measure. 

BOTTOM-UP APPROACH: FROM POINTS TO CLUSTERS VIA GROUPING 
When we have a set of points in n-dimensions, we can do two things. We can assume that all points 

belong to a single cluster and start dividing the cluster into smaller clusters, or we can assume that each 

of the data point begins in its own cluster and start grouping them iteratively. The former is called a 

top-down approach and the latter is called a bottom-up approach. The bottom-up clustering algorithms 

work as follows: 

From a set of points in an n-dimensional space, the algorithm finds the pairs of points close to each 

other and merges them into one cluster. This merge is done only if the distance between them is below 

a certain threshold value. If not, those points are left alone. We repeat this process of merging the 

clusters using the distance measure till nothing can be merged anymore.  
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TOP-DOWN APPROACH: SPLITTING THE GIANT CLUSTER 
We start with all points belonging to a single cluster i.e. a giant cluster. Then we divide this giant cluster 

into smaller clusters. This is known as a top-down approach. The aim here is to find the best possible 

way to split this giant cluster into two smaller clusters. These clusters are divided repeatedly until we 

get clusters, which are meaningful. This is based on some distance measure criterion. 

Figure 9.10 Top down clustering approach. During each iteration, the clusters are divided into two by finding the best 
splitting till we get the clusters we desire. 

Though this is very straightforward, finding the best possible split for a set of n-dimensional points is 

not too easy. Moreover, most of these algorithms cannot be easily reduced into the map-reduce form 

and so Mahout doesn’t have them now. An example of a top down algorithm is Spectral clustering. In 

Spectral clustering, the splitting is decided by finding the line/plane that cuts the data into two sets with 

a larger margin between the two sets.  

The beauty of top down and bottom up approaches are that they don’t require the user to input the 

cluster size. This means that in a dataset where we have no idea about the distribution of the points, 

both types of algorithms output clusters based solely on the similarity metric. This works quite well in 

many applications. These approaches are still being researched upon. Even though Mahout has no 

implementations of these methods, other specialized algorithms implemented in Mahout can run as 

Map/Reduce jobs without specifying the number of clusters as explained below. 

The lack of hierarchical clustering algorithms in Map/Reduce is easily circumvented by the smart use 

of K-Means, Fuzzy K-Means, and Dirichlet clustering. To get the hierarchy, start with small number of 

clusters (k) and repeat clustering with increasing values of k. Alternately, we can start with large 

number of centroids and start clustering the cluster centroids with decreasing value of k. This mimics 
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the hierarchical clustering behavior while making full use of the scalable nature of Mahout 

implementations.  

The next section deals with the Fuzzy K-Means algorithm in detail. We will be using it to improve our 

related articles implementation for our news website allmynews.com. 

9.3 Fuzzy K-Means clustering 
As the name says, this algorithm does a fuzzy form of K-Means clustering. Instead of exclusive 

clustering in K-Means, Fuzzy K-Means tries to generate overlapping clusters from the dataset. In the 

academic community, it’s also known by the name Fuzzy C-Means algorithm. We can think of it as an 

extension of K-Means. K-Means tries to find the hard clusters (a point belonging to one cluster) where 

as, Fuzzy K-Means discovers the soft clusters. In a soft cluster, any point can belong to more than one 

cluster with a certain affinity value towards each. This affinity is proportional to the distance of point to 

the centroid of the cluster. Like K-Means, Fuzzy K-Means works on those objects that can be 

represented in n-dimensional vector space and has a distance measure defined. 

9.3.1 Running Fuzzy K-Means clustering 
The algorithm above is available in FuzzyKMeansClusterer or the FuzzyKMeansDriver class. 

Like others, the former is an in-memory implementation and the latter Map/Reduce. We are going to 

use the same random point generator function we used earlier in order to create the points scattered in 

the 2-dimensional plane. In listing 9.6, we ran the in-memory version using the 

FuzzyKMeansClusterer with the following parameters: 

 The input Vector data in the List<Vector> format. 

 The DistanceMeasure is EuclideanDistanceMeasure. 

 The threshold of convergence is 0.01 

 The number of clusters k is 3 

 The fuzziness parameter m is 3. This parameter will be explained later in section 9.3.2 

9.6 In-memory clustering example of Fuzzy K-Means clustering 
public static void FuzzyKMeansExample() { 
  List<Vector> sampleData = new ArrayList<Vector>(); 
 
  generateSamples(sampleData, 400, 1, 1, 3);                  #1 
  generateSamples(sampleData, 300, 1, 0, 0.5); 
  generateSamples(sampleData, 300, 0, 2, 0.1); 
 
  List<Vector> randomPoints = RandomSeedGenerator.chooseRandomPoints( 
    points, k); 
     List<SoftCluster> clusters = new ArrayList<SoftCluster>(); 
 
     int clusterId = 0; 
     for (Vector v : randomPoints) { 
       clusters.add(new SoftCluster(v, clusterId++)); 
     } 
     
     List<List<SoftCluster>> finalClusters = FuzzyKMeansClusterer 
.clusterPoints(points, clusters, new EuclideanDistanceMeasure(), 
    0.01, 3, 10); #2 
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     for(SoftCluster cluster : finalClusters.get(finalClusters.size() - 1)) { 
    System.out.println("Fuzzy Cluster id: " + cluster.getId()  
        + " center: " + cluster.getCenter().asFormatString());   #3   
     } 
 
   } 

 

#1 Generate 3 sets of points using different parameters 
#2 Run FuzzyKMeansClusterer 
#3 Read the center of the fuzzy-clusters and print it. 

Figure 9.11 Fuzzy K-Means clustering. The clusters look like they are overlapping each other and the degree of overlap 
is decided by the fuzziness parameter. 

The DisplayFuzzyKMeans class in the “examples” folder of the Mahout code is a good tool to visualize 

this algorithm on a 2-dimensional plane. DisplayFuzzyKMeans runs as a Java swing application and 

produces an output as given in the figure 9.11. 

MAP/REDUCE IMPLEMENTATION OF FUZZY K-MEANS 
Before running the Map/Reduce implementation lets create a checklist for running Fuzzy K-Means 

clustering against the Reuters dataset like we did for K-Means. We have:  

 The dataset in the Vector format. 

 The RandomSeedGenerator to seed the initial k clusters. 

 The distance measure is SquaredEuclideanDistanceMeasure. 

 A large value of convergenceThreshold –d 1.0, as we are using the squared value of the 
distance measure.  

 The maxIterations is the default value of –x 10 
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 The coefficient of normalization or the fuzziness factor, a value greater than 1.0, which will be 
explained in the section 9.3.2, –m  

To run the Fuzzy K-Means clustering over the input data, use the Mahout launcher using the 

“fkmeans” program name as follows: 

 
$bin/mahout fkmeans 
-i reuters-vectors -c reuters-fkmeans-centroids  
-o reuters-fkmeans-clusters -d 1.0 -k 21 -m 2 -w 
-dm org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure  
 

Like K-Means, FuzzyKMeansDriver will automatically run the RandomSeedGenerator if the 

number of clusters (k) flag is set. Once the random centroids are generated, Fuzzy K-Means clustering 

will use it as the input set of k centroids. The algorithm runs multiple iterations over the dataset until 

the centroids converges, each time creating the output in the folder cluster-*. Finally, it runs another 

job, which generates the probabilities of a point belonging to a particular cluster based on the distance 

measure and the fuzziness parameter (m).  

Before we get into details of the fuzziness parameter, it’s a good idea to inspect the clusters using 

the ClusterDumper tool. ClusterDumper shows the top words of the cluster as per the centroid. To 

get the actual mapping of points to the clusters, we need to read the SequenceFiles in the points/ 

folder. Each entry in the sequence file has a key, which is the identifier of the vector, and a value, which 

is the list of cluster centroids with an associated numerical value, which tell us how well the point, 

belongs to that particular centroid.  

9.3.2 How fuzzy is too fuzzy 
Fuzzy K-Means has a parameter m called the fuzziness factor. Like the K-Means Fuzzy K-Means loops 

over the dataset and instead of assigning vectors to the nearest centroids, it calculates the degree of 

association of the point to each of the clusters. Say for a vector (V) if d1, d2, … , dk are the distances 

towards each of the k cluster centroids. The degree of association (u1) of vector (V) to the first cluster 

(C1) is calculated as  

 
u1  = 1/((d1/d1)^(2/(m-1))+ (d1/d2)^(2/(m-1)) + … + (d1/dk)^(2/(m-1))) 
 

Similarly, we can calculate the degree of belonging to other clusters by replacing d1 in the 

numerators of the denominator expression by d2, d3 and so on. It’s clear from the expression that m 

should be greater than 1, or else the denominator of the fraction becomes zero and things break down.  

If we choose a value of m as 2, we will see that all degrees of association for any point sums up to 

one.  If on the other hand, m comes very close to 1, like 1.000001, more importance would be given to 

that centroid closest to the vector. So, the Fuzzy K-Means algorithm starts behaving more like K-Means 

algorithm, as m gets closer to 1. If m increases, the fuzziness of the algorithm increases and we begin to 

see more and more overlap. 

The Fuzzy-K-Means algorithm is also found to converge better and faster than a standard K-Means 

algorithm. 
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9.3.3 Case study: clustering news articles using Fuzzy K-Means 
The related articles functionality will certainly be richer with knowledge of partial overlap. The partial 

score will help rank the related articles by their relatedness to the cluster. In listing 9.7, we will modify 

our case study example to use Fuzzy K-Means algorithm and retrieve the fuzzy cluster membership 

information.  

9.7 News clustering using Fuzzy K-Means clustering 
public class NewsFuzzyKMeansClustering { 
  public static void main(String args[]) throws Exception { 
    … 
    … 
    … 
    float fuzzificationFactor = 2.0f; 
    String vectorsFolder = outputDir + TFIDFConverter.TFIDF_OUTPUT_FOLDER 
                           + "/vectors"; 
    String canopyCentroids = outputDir + "/canopy-centroids"; 
    String clusterOutput = outputDir + "/clusters"; 
 
    CanopyDriver.runJob(vectorsFolder, canopyCentroids,  #1 
      ManhattanDistanceMeasure.class.getName(), 2000, 1800); 
    FuzzyMeansDriver.runJob(vectorsFolder, canopyCentroids, clusterOutput, 
      TanimotoDistanceMeasure.class.getName(), 0.01, 10, 1, 
 fuzzificationFactor);       #2 
     
 
 
    SequenceFile.Reader reader = new SequenceFile.Reader(fs, new Path( 
      clusterOutput + "/points/part-00000"), conf);             
     
    Text key = new Text(); 
    Text value = new Text();                     
    while (reader.next(key, value)) {                    #3 
   for (int i = 0; i < value.getClusters().length; i++) { 
        System.out.println(key.toString() + " belongs to cluster " #4 
          + value.getClusters()[i].getIdentifier() + " with probability " 
          + value.getProbabilities()[i]); 
      }       
      // Write code here to save the cluster mapping to our database 
    } 
    reader.close(); 
  } 
} 

 

#1 Run canopy generation job to get cluster centroids 
#2 Run Fuzzy K-Means to cluster the documents 
#3 Read the mapping table of vector to Fuzzy K-Means output  
#4 Print the clusters and the probabilities of association 

They Fuzzy K-Means algorithm gave us a way to do a much needed refinement for our related 

articles code. Now we know, by what degree a point belongs to a cluster. Using this information we can 

find top clusters the point belongs to and use the degree to find the weighted score of articles. This way 
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we negate the strictness of overlapping clustering and give better related-articles for documents lying 

on the boundaries of a cluster. 

Next, let’s learn another clustering algorithm in Mahout. Unlike the ones we have seen until now, this 

one produces a lot of information about the cluster and how points are distributed within it. It is called 

Dirichlet process clustering. 

9.4 Model based Clustering 
The complexities of clustering algorithms have increased progressively in this chapter. We started 

with K-Means, a very fast clustering algorithm. Then, we saw how we captured partial clustering 

membership using Fuzzy K-Means. We also learned to optimize the clustering using centroid generation 

algorithms like Canopy clustering and K-Means++. What more do we want to know about these 

clusters? How do we understand the structures within the data better? To do this, we may need a 

method that is completely different from the algorithms we described above. Model based clustering 

methods help alleviate these problems. Before learning what model based clustering is, we need to see 

some of the issues faced by K-Means and other related algorithms. 

9.4.1 Fallacies of K-Means 
Say we wanted to cluster our dataset into some k clusters. We have learned how we can run K-

Means and get the clusters quickly. K-Means works well because it can always divide clusters easily 

using a linear distance. What if we knew that the clusters are based on a normal distribution and are 

mixed together and overlapping each other? Can we use this information to improve clustering using K-

Means? Here, we might be better off with a Fuzzy K-Means clustering.  

What if the clusters themselves are not in a normal distribution? What if the clusters are having an 

ovoid shape? Neither K-Means nor Fuzzy K-Means knows how to use this information to improve the 

clustering. Before we answer these questions, let’s first see an example where K-Means clustering fails 

to describe a simple distribution of data. 

ASYMMETRICAL NORMAL DISTRIBUTION 
We are going to run K-Means clustering using points generated from an asymmetrical normal 

distribution. What it means is, instead of the points being scattered in 2-dimensions around a point in a 

circular area, we are going to make the point-generator generate clusters of points having different 

standard deviations in different directions. This creates an ellipsoidal area where the points are 

concentrated. We will now run the in-memory K-Means implementation over this data.  

Figure 9.12 shows the ellipsoidal or asymmetric distribution of points and the clusters generated by 

K-Means. It is clear that K-Means is not powerful enough to figure out the distribution of these points.  
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Figure 9.12 Running K-Means clustering over asymmetric normal distribution of points. The points are scattered in an 
oval -shaped area instead of a circular one. Clearly K-Means is not a perfect fit for the data and these clusters don’t 
make any. 

Another issue with K-Means is its requirement of the k number of seed centroids. Most of the time, 

we end up over-estimating this number. Finding the optimal value of k is not an easy task unless there 

is a clear idea about the data, which happens very rarely. Even by doing canopy generation or K-

Means++, we need to tune the distance measure to make these algorithms improve the estimate of k. 

What if there was a better way to find the number of clusters? That’s something where model-based 

clustering proves to be useful. 

ISSUES WITH CLUSTERING REAL WORLD DATA 
Think of the following real-world clustering problem where we want to cluster a population of people 

based on their movie preferences to find like-minded people. We can estimate the number of clusters in 

such a population by counting different genre of movies.  

Some of the clusters that we find here are: people who like action movies, people who like romantic 

movies, people who like comedy and so on. This is not a very good estimation as there are tons of 

exceptions. For example: there are clusters of people who like only gangster movies, not other action 

movies. They form a sub cluster under the action cluster. With such a complex mixing of clusters, we 

never get the information of a small cluster since a bigger cluster always subsumes it. The only way to 

improve this situation is to somehow understand that movie preferences of a population of people are 

hierarchical in nature.  

If we had known this earlier, we would have used a hierarchical clustering method to cluster the 

people better. But those methods cannot capture the overlap. So all the clustering algorithms we have 

seen before does not capture the hierarchy and the overlap at the same time. How can we use a 
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method to uncover all these information? That’s also something that is tackled by the model-based 

clustering. 

9.4.3 Dirichlet processes clustering 
Mahout has a model based clustering algorithm known by the name Dirichlet processes clustering. 

The word “Dirichlet” refers to a family of probability distributions defined by a German mathematician 

Johann Peter Gustav Lejeune Dirichlet. The Dirichlet process clustering performs something known as 

mixture modeling using calculations based on the Dirichlet distribution. The whole process might sound 

very complicated without a deeper understanding of Dirichlet distributions, but the idea is very simple.  

Say, we knew that our data-points are concentrated in an area like a circle and well distributed 

within it and we have a model that explains this behavior. We test whether our data fits the model by 

reading through our vectors and calculating the probability of the model being a fit to the data. It is like 

saying that the region of concentration of points looks more like a circular model, with some greater 

degree of confidence. It could also say that the region looks less like a triangle, another model, due to 

lesser probability of fit of the data with the triangle. If we find a fit, we know the structure of our data. 

Note, that circles and triangles are used here as a tool for visualizing this algorithm. They are not be 

mistaken for a probabilistic model on which this algorithm works.  

Dirichlet process clustering is implemented as a Bayesian clustering algorithm in Mahout. What that 

means is that the algorithm doesn’t just want to give one explanation of the data, rather it wants to 

give lots of explanations. This is like saying, the region A is like a circle, the region B is like a triangle, 

together region A and region B is like a polygon and so on. In reality, these regions are statistical 

distributions like the normal distribution that was seen earlier in the chapter. 

 

Figure 9.13 Dirichlet clustering. The models are made to fit the given dataset as best as it can to describe it. The right 
model will fit the data better and tells the number of clusters in the dataset which correlates with the model. 
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We will come to various model distributions a little later in this section, but a full discourse on them 

are out of scope of this book. Next, Lets understand how Dirichlet implementation in Mahout works 

UNDERSTANDING DIRICHLET PROCESS CLUSTERING ALGORITHM 
The Dirichlet process clustering starts with a dataset of points and a ModelDistribution. Think of 

ModelDistribution as a class that generates different models. We create an empty model and try to 

assign points to it. When this happens, the model grows or shrinks its parameters in a crude manner to 

try and fit the data. One it does this for all points, it re-estimates the parameters of the model precisely 

using all the points and the partial probability of the point belonging to the model.  

At the end of each pass, we get some number of samples that contains the probabilities, models and 

assignment of points to models. These samples could be regarded as a cluster and they give us 

information about the models and its parameters. They also give us information about the shape and 

size of the model. Moreover, by examining the number of models in each sample that actually has some 

points assigned to it, we can get information about how many models (clusters) our the data supports. 

Also, by examining how often two points are assigned to the same model, we can get an approximate 

measure of how these points are explained by the same model. Such soft-membership information is a 

side product of using model-based clustering. Dirichlet process clustering is able to capture the partial 

probabilities of points towards various models.  

9.4.4 Running a model based clustering example 
The Dirichlet process based clustering is implemented in the DirichletClusterer class as in-

memory and in DirichletDriver as a Map/Reduce job. We are going to use the generateSamples 

function we saw earlier in this chapter to create our vectors in a random fashion. Note that the Dirichlet 

clustering implementation is generic enough to put in any type of distribution and any data type. The 

Model implementations in Mahout use the VectorWritable type; hence, we will be using that as the 

default type in our clustering code. We are going to run Dirichlet process clustering using the following 

parameters: 

 The input Vector data in the List<VectorWritable> format. 

 The NormalModelDistribution as the model distribution we are trying to fit our data on. 

 The alpha value of the Dirichlet distribution 1.0 

 The number of models to start with numModels is 10 

 The thin and burn intervals as 2 and 2.    

These points will be scattered around a specified center point like the normal distribution. The code 

snippet is shown below in listing 9.8. 

9.8 Dirichlet clustering using normal distribution 
List<VectorWritable> sampleData = new ArrayList<VectorWritable>(); 
 
generateSamples(sampleData, 400, 1, 1, 3);                  #1 
generateSamples(sampleData, 300, 1, 0, 0.5); 
generateSamples(sampleData, 300, 0, 2, 0.1); 
 
DirichletClusterer<VectorWritable> dc =  
  new DirichletClusterer<VectorWritable>( 
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    sampleData, 
       new NormalModelDistribution( 
         new VectorWritable(new DenseVector(2))), 
       1.0, 10, 2, 2);                                           
List<Model<VectorWritable>[]> result = dc.cluster(20);    #2          

 

 #1 Generate 3 sets of points each with different parameters 
 #2 Run Dirichlet Clusterer using the NormalModelDistribution 

In the above example, we generated some sample points using a normal distribution and tried to fit 

the normal model distribution over our data. The parameters of the algorithm decide the speed and 

quality of convergence.  

Here, alpha is a smoothing parameter. It allows a smooth transition of the models before and after 

the re-sampling happens. A higher value makes the transition slower and so clustering would try and 

over-fit the models. Lower value causes the clustering to merge models more quickly and hence tries to 

under-fit the model.   

Figure 9.14 Dirichlet clustering with Normal Distribution using the DisplayNDirichlet class in Mahout examples folder 

 The thin and the burn intervals are used to decrease the memory usage of the clustering. The 

burn parameter decides the number of iterations to complete before saving the first set of models for 

the dataset. The thin parameter decides the number of iterations to skip between saving such a Model 

configuration.  

The motivation of having these parameters is that we generally do many iterations to reach 

convergence and the initial states are not worth exploring. During the initial stages, the counts of 

Models are extremely high and they provide no real value for us. So, we skip (thin/burn) them to 

save memory. The final state achieved using the DisplayNDirichlet clustering example is given in 
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Figure 9.14. It’s found in the examples folder of Mahout along with examples to plenty other model 

distributions and their clustering. 

The kind of clusters we got here is different from the output of K-Means clustering we got in Section 

9.2. Dirichlet process clustering did something that K-Means could not do which was to actually identify 

the 3 clusters exactly the way we generated it. Any other algorithm would have just tried to cluster 

things into overlapping groups or hierarchical groups.  

This is just the tip of the iceberg. To show the awesome power of Model based clustering, we are 

going to repeat this example based on something more difficult than a normal distribution. 

ASYMMETRIC NORMAL DISTRIBUTION 
 Normal distribution is asymmetrical when the standard deviations of points along different 

dimensions are different. This gives it an ellipsoidal shape. When we ran K-Means clustering on this 

distribution in section 9.4.1, we saw how it broke down miserably. Now we will attempt to cluster the 

same set of points using Dirichlet clustering with another model distribution class, the 

AsymmetricSampledNormalDistribution. We will run Dirichlet process clustering using the 

asymmetric normal model on the set of 2-d points that has different standard deviation along the x and 

y directions. The output of the clustering is shown in Figure 9.15. 

Figure 9.15 Dirichlet clustering with Asymmetrical Normal Distribution using the Display2dASNDirichlet class. The thick 
line denotes the final state and the thin lines are the states in previous iterations 

Even though the number of clusters formed seems to have increased, model based clustering was 

able to find the asymmetric model and fit them to the data much better than any of the other 

algorithms. A better value of alpha might have improved this. The other model-distributions 

implemented in Mahout are L1ModelDistribution and SampledNormalModelDisribution. A 

discussion on them is too advanced for a book that gives an introduction clustering. Mahout 
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documentation will explain their usage more. Next, we will try to launch the Map/Reduce version of 

Dirichlet clustering. 

MAP/REDUCE VERSION OF DIRICHLET CLUSTERING 
Like other implementations, in Mahout, Dirichlet clustering is also focused on scaling with huge 

datasets. The Map/Reduce version of Dirichlet clustering is implemented in the DirichletDriver 

class. The Dirichlet job could be run from the command line on the Reuters dataset. Lets get to our 

checklist for running a Dirichlet clustering Map/Reduce job: 

 The Reuters dataset in the Vector format 

 The model distribution class –d defaults to NormalModelDistribution 

 The model distribution prototype Vector class. The class that becomes the type for all vectors 
created in the job –p defaults to SequentialAccessSparseVector 

 The alpha0 value for the distribution, -m 1.0 

 The number of clusters to start the clustering with –k 60. 

 The number of iterations to run the algorithm –x 10 

Launch the algorithm over the dataset using the Mahout launcher with program name as “dirichlet” as 

follows:  

 
bin/mahout dirichlet  
-i examples/reuters-vectors/ 
-o reuters-dirichlet-clusters -k 60 -x 10 -m 1.0 
-d org.apache.mahout.clustering.dirichlet.models.NormalModelDistribution 
-p org.apache.mahout.math.SequentialAccessSparseVector 
 

After each iteration of Dirichlet process clustering, the job writes the state in the output folder as 

subfolders with pattern state-*. Your can read then using SequenceFile reader and get the centroid 

and the standard deviation values for each model. Based on this we assign vectors to each cluster at the 

end of clustering.   

Dirichlet process clustering is a powerful way of getting quality clusters using the knowledge of data 

distribution models. In Mahout, we have made the algorithm as a pluggable framework where different 

models can be created and tested on. As the models becomes more complex, there is a chance of things 

slowing down on huge datasets. At this point, we will have to fall back on the other clustering 

algorithms. However, seeing the output of Dirichlet process clustering, we can clearly take a decision on 

whether the algorithm we choose should be fuzzy or rigid, overlapping or hierarchical, or whether the 

distance measure is Manhattan or cosine and the threshold for convergence. The Dirichlet process 

clustering is more of a data understanding tool while being a great data clustering one.   

9.5 Topic Modeling using Latent Dirichlet Allocation (LDA) 
Till now, we have thought of documents as a set of term with some weights assigned to it. In real life, 

we think of news articles or any other text document as a set of topics. These topics are fuzzy in nature. 

On rare occasions, they are ambiguous. Most of the time when we read a text, we somehow associate it 

to a set of topics. If someone asks, “Hey Bob, what was that news article all about?” We will naturally 
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say “Well, it talked about the US war against terrorism” instead of telling him what words were actually 

used in the document.  

Think of a topic like “Dog”. There are plenty of texts on the topic “Dog” each describing various 

things. The frequently occurring words in such documents would be “dog”, “woof”, “puppy”, “bark”, 

“bow”, “chase”, “loyal”, “friend” to name a few. Some of these words “bow”, “bark” etc are ambiguous, 

as they are found in other topics like “arrow and bow” or “bark of a tree”. Still, we can say that all these 

words are in the topic “Dog”, some with more probability than others. Similarly, a topic like “Cat” has 

frequently occurring words like “cat”, “kitten”, “meow”, “purr”, and “fur-ball”. 

Figure 9.14 The topics “Dog” and “Cat” and the words that occur frequently in them.  

If we were asked to find out these topics in a particular set of documents, our natural instinct now 

would be to use clustering. We would modify our clustering code to work with word vectors instead of 

document vectors we have been using until now. A word vector is nothing but a vector for each word 

where the features would be ids of the other words that occur along with it in the corpus and the 

weights would be the number of documents they occur together in.  

Once we have such a vector, we could simply run one of the clustering algorithms, figure out the 

clusters of words, and call them as topics. Though this seems very simple, the amount of processing 

required to create the word vector is quite high. Still we can cluster words that occur together, call them 

a topic, and then calculate the probabilities of the word occurring to each topic.  

LDA is more than just this clustering. If two words having the same meaning or form don’t occur 

together, then clustering will not be able to associate correlation between those two based on other 

instances. This is where LDA shines.  

Now lets extend this problem. Say, we have a set of observations (documents and the words in it). 

Can we find out the hidden groups of features (topics) to explain these observations? LDA clusters 

features into hidden groups or topics in a very efficient manner.  
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9.5.1 Understanding LDA 
Firstly, don’t confuse LDA with the concept of Linear Discriminant Analysis. That is also known by the 

short name LDA. Linear Discriminant Analysis is a method used in classification where as Latent Dirichlet 

Allocation is a form of clustering.  

LDA is a generative model like the Dirichlet process clustering. We start with a known model and try 

to explain the data by refining the parameters to fit the model to the data. LDA does this by assuming 

that the whole corpus has some k number of topics and each document is a talking about these k topics. 

Therefore, the document is considered a mixture of topics with different probabilities.  

TIP 

Machine learning algorithms come in two flavors - generative or discriminative. Algorithms like K-

Means or hierarchical clustering which tries to split the data into k groups based on a distance metric 

are generally called discriminative. The example of the discriminative type is the SVM classifier, which 

we will learn about in the Classification part of this book. In Dirichlet clustering, the model tweaked to 

fit the data, and just using the parameters of the model, we can generate the data on which it fits. 

Hence, it is called a generative model.  

How is it better than just clustering words? LDA is much powerful than standard clustering as it can 

jointly cluster words into "topics" and documents into mixtures of topics. Suppose there is a document 

about the Olympics, which has words like “gold”, “medal”, “run”, “sprint” and another document about 

the 100m sprints in Asian games and has words like “winner”, “gold”, and “sprint”. LDA can infer a 

model where the first document is considered as the mix of two topics one about sports and has words 

like “winner, “gold”, “medal” and other about the 100m run and has words like “run”, “sprint”. LDA can 

find the probability with which each of the topics generate the respective documents. The topics 

themselves are a distribution of the probabilities of words. Therefore, the topic “sports” may have the 

word “run” with a lower probability than in the “100m sprint”.  

The LDA algorithm works similar to Dirichlet clustering. It starts with an empty topic model. It then 

reads all the documents in the Mapper in parallel and calculates the probability of each topic for each 

word in the document. Once this is done, the counts of these probabilities are sent to the reducer where 

they are summed and the whole model is normalized. We run this process repeatedly until the model 

starts explaining the documents better: that is, the sum of the (log) probabilities stop changing. The 

degree of change is decided by a convergence threshold parameter, similar to the threshold we found in 

K-Means clustering. Instead of the relative change in centroid, LDA estimates how well the model fits 

the data. If the likelihood value does not change above this threshold, we stop the iteration.  

9.5.2 Tuning the parameters of LDA  
Before running the LDA implementation in Mahout, we need understand the two parameters in LDA 

that gives a big impact on the runtime and quality. The first of these is the number of topics. Like, K-

Means, we need to figure it out from the data that we have. Lower value for the number of topics 

usually gives us broader topics like science, sports, politics etc and engulfs words spanning multiple 

sub-topics. Large number of topics gives us focused or niche ones like “quantum physics”, “laws of 

reflection”.  
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A large number of topics also mean that the algorithm needs lengthier passes to estimate the word 

distribution for all the topics. This can be a serious slow down. A good rule of thumb is to choose a value 

that makes sense for a particular use case. Since, Mahout LDA is written as a Map/Reduce job, it can be 

run in large Hadoop clusters. We can speed up the algorithm by adding more servers if there is such 

need. 

Second parameter is the number of words in the corpus, which is also the cardinality of the vectors. 

It determines the size of the matrices used in the LDA Mapper. The Mapper constructs a matrix of the 

size - number of topics multiplied by document length, which is number of words or features in the 

corpus. If we need to speed up LDA, apart from decreasing the number of topics, we also need to keep 

the features to a minimum. If we need to find the complete probability distribution of all the words over 

topics, we should leave this parameter alone. Instead, if we are interested only in finding the topic 

model containing only the keywords from a large corpus, we can simply prune away the high frequency 

words in the corpus while creating vectors.  

We can lower the value of the max-document-frequency-percentage parameter (--maxDFPercent) 

in the dictionary-based vectorizer. A value of 70 removes all words that occur in more than 70% of the 

documents.  

9.5.3 Case Study: Finding topics in News documents  
We will run the Mahout LDA over the Reuters dataset. First, we run the dictionary vectorizer, create 

Tf-Idf vectors, and use them as input for the LDADriver. The high frequency words are pruned to 

speed up the calculation. In this example, we will model 10 topics from the Reuter vectors. The entry 

point LDADriver takes the following parameters: 

 Input directory containing Vectors 

 Output directory to write the LDA states after every iteration 

 Number of topics to model –k 10 

 Number of features in the corpus –v 

 Topic smoothing parameter (uses the default value of 50/number of topics) 

 Limit on the maximum number of iterations (--maxIter 20) 

The number of features in the corpus (-v) can be easily found by counting the number of entries in 

the dictionary file located in the vectorizer folder. We can use the SequenceFileDumper utility to find 

the number of dictionary entries as described in chapter 8. We will run the LDA algorithm from the 

command line as follows:  
bin/mahout lda 
-i reuters-vectors  
-o reuters-lda-sparse 
-k 10 -v 7000 --maxIter 20 –w 
 

LDA will run 20 iterations or stop when the estimation converges. The state of the model after each 

iteration is written in the output directory as folders beginning with state-. Mahout has an output 

reader for LDA under the utils directory for reading the topic and word probabilities from the output 

state directory.  
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org.apache.mahout.clustering.lda.LDAPrintTopics is the main entry point for the utility. 

We can see the top 5 words of each topic model from the state folder of any iteration as follows: 
bin/mahout org.apache.mahout.clustering.lda.LDAPrintTopics 
-s reuters-lda-sparse/state-20/ 
-d reuters-vectors/dictionary-file-* 
-dt sequencefile –w 5 
 

The output for this example is shown in Table 9.1. Note that only 5 topics are shown from the 10. 

 

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 

wheat south loans trading said 

7-apr-1987 said president exchange inc 

agriculture oil bank market its 

export production chairman dollar corp 

tonnes energy debt he company 

Table 9.1 Top 5 words in selected topics from LDA topic modeling of Reuters news data. 

LDA was able to distill some very diverse set of topics from the Reuters collection. Still there are 

some undesired words like “7-apr-1987”, “said”, “he” etc. LDA treats these words similar to any other 

word in the collection. So, more number of iterations is usually necessary to find better topic models.  

The unwanted words don’t go away easily because of the high frequency with which they occur. It is 

found that these words belong to any topic with a higher probability than the keywords. This is clear if 

we try to examine the documents talking about these topics in the corpus. However, words like “said”, 

“he” etc did not go even after pruning high frequency words using the dictionary-vectorizer. Can LDA do 

something better? Yes, it can! 

One parameter we didn’t tweak in this run was the topic smoothing parameter (-a). Since text data 

is very noisy, it induces error in the LDA estimation. LDA can work around it by increasing smoothing 

value to increase the effect of keywords that occur infrequently. Doing this decreases the effect of the 

high frequency words, as well. This causes LDA to take more number of iterations to produce a 

meaningful topic model.  

By default, LDA keeps this smoothing parameter as 50/numTopics. In our sample run, it was 5. Let 

us increase the smoothing value to say 20, and re-rerun LDA. After the iterations finish, inspect the 

output using the LDAPrintTopics class.  

 

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 

production year said stock vs 

tonnes growth banks corp mln 

price foreign have securities cts 
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oil last analysts inc net 

department billion market reuter loss 

Table 9.2 Top 5 words in selected topics from LDA topic modeling of Reuters data after increased smoothing is applied. 

The output is displayed in table 9.2. Effects of high frequency words are still there, but the topics 

look like they have become more coherent.  

9.5.4 Applications of Topic Modeling 
Topic modeling output files are of the (key, value) format (IntPairWritable, 

DoubleWritable). The key is a pair of integers, first being the topic id and the second the feature id. 

The value is the likelihood of the word being in the model. We can use these models for many practical 

purposes: 

 Use them as centroids and associate documents to the nearest center using any distance 

measure 

 Assign label to them and use them as models for classification again using some distance 
measure 

 Topic collections can be visualized as related tag clouds similar to Digg and Del.icio.us. We will 
explore more on this in our chapter on case studies 

 Visualize topics across time. We model topics in news articles by month or by year. We can see 

trends in topics over time. An interesting experiment is the topic modeling of science across time. 

If we look closer, we will see that the most mentioned words in science journals of 1890s was 

about steam engine, in 1940s about atomic research, in 1990s about polymer and semiconductor 

devices. The experiment is explained in this website: 
http://www.cs.princeton.edu/~blei/topicmodeling.html 

 Words in topic models can be used to improve search coverage. Using this information, a person 
can search for “Cola”, and get results for the queries “Coca-Cola” and “Pepsi” along with it 

LDA is an algorithm, which can uncover interesting clusters and word relationship from a corpus. People 

are still trying to discover ways to fully utilize all this information. Mahout LDA helps us analyze millions 

of documents over large number of servers. Since it runs very fast, it is easy to experiment with it. We 

will explore LDA in a case study in Chapter 12 and show how it is used to boost the related document 

framework we are trying show. 
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9.6 Summary 
In this chapter, we saw the clustering algorithms Mahout had to offer. The chapter started with the 

various categories of clustering algorithms based on their clustering strategy and are summarized table 

9.3. 

 

 
Algorithms 

In-memory 
implementation 

Map/Reduce 
implementation 

Fixed 
clusters 

Partial 
membership 

K-Means KMeansClusterer KMeansDriver Y N 

Canopy CanopyClusterer CanopyDriver N N 

K-Means++ KMeansPlusClusterer KMeansPlusDriver N N 

Fuzzy K-Means FuzzyKMeansClusterer FuzzyKMeansDriver Y Y 

Dirichlet process DirichletClusterer DirichletDriver N Y 

LDA N/A LDADriver Y Y 

Table 9.3 A summary of the different clustering algorithms in mahout, the entry-point classes, and their properties. 

 The Mahout implementation of the popular K-Means algorithm works great for small and big datasets. A 

good estimation of the centroids of the clusters made clustering faster. Due to this reason, we explored 

ways to improve centroid estimation. The Canopy clustering and K-Means++ algorithms did fast and 

approximate clustering of the data and estimated the centroid of the clusters approximately. By using 

these centroids as starting point, K-Means iterations were found to converge much faster than before. 

We saw the various parameters in K-Means and used it to create a clustering module for a news 

website. Using the distance measure classes in Mahout, we were able to tune the news-clustering 

module to get better quality of clusters for text data. 

Fuzzy K-Means clustering gives more information related to partial membership of a document into 

various clusters and Fuzzy K-Means has better convergence properties than just K-Means. We tuned our 

clustering module to use Fuzzy K-Means to help identify this soft membership information. Due to the 

limitation of fixing a k value in K-Means and Fuzzy K-Means, we explored other options and found 

model-based clustering algorithm to be a good replacement for both of them.  

Model based clustering algorithm in Mahout, the Dirichlet process clustering did not just assign 

points into a set of clusters. It was able to explain how well the model fit the data as well as the 

distribution of points in the cluster. This algorithm was able to describe the clusters in some very 

difficult dataset where previous methods failed. Dirichlet process clustering proved to be a powerful tool 

to describe such data.  

Finally, we looked at LDA a recent advancement in the area of clustering which was able to model 

the data into mixture of topics. These topics are not only clusters of documents but also a probabilistic 

distribution of words. LDA could jointly cluster the set of words into topics and make the set of 

documents a mixture of topics. LDA opened up new possibilities where we are able to identify 

connections between various words purely from the observed text corpus.  
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The actual insight of what works best for our data comes with experimentation. We have powerful 

tools in the Mahout clustering package, which are built on top of Hadoop that gives us the power to 

scale to data of any size by simply adding more machines to the cluster. 

The next few chapters will be focused more on tuning a clustering algorithm for speed and quality. 

Over the way, we will refine our news clustering code, and finally demonstrate the related-articles 

feature in action. We will also explore some very interesting problems as case studies, which the 

clustering algorithms in Mahout help solve. Next, in Chapter 9, we will learn about some lesser known 

tools and techniques present in Mahout to help understand and improve the quality of clustering. 
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